Biomarker Updates

Thomas Powles

Director of Barts Cancer Center. Professor of Urology Cancer, Barts Cancer Institute.

DISCLOSURES

- Consulting Fees: AstraZeneca, BMS, Exelixis, Incyte, Ipsen, Merck, MSD, Novartis, Pfizer, Seattle Genetics, Merck Serono, Astellas, Johnson & Johnson, Eisai, Roche
 - Contracted Research: AstraZeneca, BMS, Exelixis, Ipsen, Merck, MSD, Novartis, Pfizer, Seattle Genetics, Merck Serono, Astellas, Johnson & Johnson, Eisai, Roche
- Other (Travel/Accommodation/Expenses): Roche, Pfizer, MSD, AstraZeneca, Ipsen

Indirect comparison of cisplatin and carboplatin in bladder cancer

Method: Adhoc analysis of the control arm from DANUBE RIII study 1st line UC trial.

Powles et al EAU 2021

EAU21 VIRTUAL 8-12 July Overall Survival by Cisplatin-Eligibility, PD-L1 High Durvalumab vs. SoC

www.eau2021.org

Cisplatin-related immunomodulation and efficacy with atezolizumab + cisplatin- vs carboplatin-based chemotherapy in metastatic urothelial cancer

Matthew D. Galsky,¹ Xiangnan Guan,² Romain Banchereau,² Li Wang,^{3,4} Jun Zhu,^{3,4} Haocheng Yu,⁴ Deepali Rishipathak,² Emma Hajaj,⁵ Rebecca H. Herbst,⁵ Ian D. Davis,⁶ Enrique Grande,⁷ Aristotelis Bamias,⁸ Maria De Santis,⁹ José Ángel Arranz,¹⁰ Eiji Kikuchi,¹¹ Jingbin Zhang,¹² Chooi Lee,¹³ Xiaodong Shen,² Peter C. Black,¹⁴ Sanjeev Mariathasan²

¹Icahn School of Medicine at Mount Sinai/Tisch Cancer Institute, New York, NY, USA; ²Genentech Inc, South San Francisco, CA, USA; ³Icahn School of Medicine at Mount Sinai, New York, NY, USA; ⁴Sema4, a Mount Sinai Venture, Stamford, CT, USA; ⁵Immunai, New York, NY, USA; ⁶Eastern Health Clinical School, Monash University and Eastern Health, Melbourne, Australia; ⁷MD Anderson Cancer Center Madrid, Madrid, Spain; ⁸National & Kapodistrian University of Athens, Athens, Greece; ⁹Charité Universitätsmedizin, Department of Urology, Berlin, Germany, and Medical University of Vienna, Department of Urology, Vienna, Austria; ¹⁰Gregorio Maranon Hospital, Madrid, Spain; ¹¹St. Marianna University School of Medicine, Kawasaki, Japan; ¹²Hoffmann-La Roche Limited, Mississauga, ON, Canada; ¹³Roche Products Limited, Welwyn Garden City, UK; ¹⁴Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada

Effects of cisplatin ± atezo on OS are most prominent in patients with PD-L1 IC-high tumours

IMvigor130: OS by PD-L1 status and chemo

Cisplatin vs carboplatin leads to gene expression changes suggestive of induction of innate and adaptive immunity

- IMvigor130: Cis- vs carbo-treated patients showed on-treatment enrichment of TNF-α signalling via NFκB, inflammatory response gene sets and interferon response gene sets across immune cell clusters
- Neoadjuvant cohort: TNFα signaling via NFκB was also enriched in paired tumour samples (post- vs pre-cis/gem)

The PD-L1 biomarker consists of many different biomarker and should be considered as such.

Randomized trials testing PD-L1 in UC

Drug	setting	Result				
atezolizumab	Platinum refractory	-ve				
atezolizumab	Adjuvant	-ve				
Durvalumab	1 st line	-ve				
Pembrolizumab	1 st line	-ve				
nivolumab	adjuvant	+ve for ITT and PD-L1+ve				
Avelumab	1 st line maintenance	+ve for ITT and PD-L1+ve				

PD-L1 biomarker: TC vs IC component

•TC, tumor cell; IC, immune cell; NE, not evaluable.

•*PD-L1 expression in ≥25% of TC or in ≥25% or 100% of IC if the percentage of IC was >1% or ≤1%, respectively, using the Ventana SP263 assay.

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Months

6

Adjuvant nivolumab in high-risk urothelial cancer.

ITT

PD-L1 ≥ 1%

But we have not yet seen OS? Why was there no PFS or OS advantage for atezolizumab? Why didn't the biomarker work with atezo?

NIVO

PBO

•OS benefit in subgroups defined by Tumor Mutation Burden (TMB) and PD-L1 status

										Arr	n			•	тмв			HF	R (95	% CI)	_	
	_				Avelumab + BSC BSC alone						Madian				0 49 (0 222 0 707)								
				~ \							leuia	111	Ľ	0.40 (0.332, 0.707)									
								Avelumab + BSC						<median< th=""><th colspan="6">0 88 (0 6/3 1 107)</th></median<>				0 88 (0 6/3 1 107)					
	100 -					BSC alone							aan 0.00 (0.0 4 0, 1.197)						_				
	90 - 80 -																						
70 60	70 –																						
	60 -						· · · ·		na Hartona →	•			""(<u>m+n</u> -	 1	~ .,								
os, °	50 -		Voter and the second se																				
40 -		- -		<u></u>	•••••			+++++++++++++++++++++++++++++++++++++++	+		<u></u>												
	30 -																- L,		1				
	20 -																						
	10 -																						
	0 -		-			-																_	
	C)	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	
											Ν	lonth	S										

Subgroup	HR (95% CI) Avelumab + BSC vs BSC alone
PD-L1+	0.56 (0.400, 0.790)
PD-L1-	0.85 (0.616, 1.181)
TMB-high	0.46 (0.321, 0.673)
TMB-low	0.93 (0.665, 1.289)
TMB-high, PDL1+ (n=190)	0.49 (0.291, 0.812)
TMB-high PDL1- (n=105)	0.42 (0.247, 0.732)
TMB-low PDL1+ (n=148)	0.62 (0.389, 0.995)
TMB-low, PDL1- (n=140)	1.40 (0.871, 2.252)

Neither TMB nor PD-L1 status alone fully predict OS benefit

EAU2021

•Tumor gene expression data can identify genes that may be associated with OS benefit from avelumab

Immune-related genes are associated with OS benefit from avelumab

Relationship between immune cell gene expression signatures and OS with avelumab

Multiple immune cell signatures may predict OS benefit with avelumab

Signatures with interaction term p<0.15

>Median vs ≤Median

14

Outcome of avelumab in TCGA subtypes.

C. Luminal infiltrated

D. Luminal papillary

LETTERS https://doi.org/10.1038/s41591-020-1086-y

Check for updates

Neoadjuvant PD-L1 plus CTLA-4 blockade in patients with cisplatin-ineligible operable high-risk urothelial carcinoma

GAO et al 2020

Phase II trial of pembrolizumab (P) in combination with sEphB4-HSA (B4) in previously treated metastatic urothelial carcinoma (mUC)

- EphrinB2 is a transmembrane protein expressed in developing arterial capillary endothelium; it is minimally expressed in adults but re-expressed in tumors and tumor blood vessels
- EphB4, the high affinity cognate receptor, is also expressed in developing venous endothelium and is re-induced in tumors and tumor vessels
- EphrinB2-EphB4 interaction activates bidirectional signaling to promote development and tumor progression by direct effects on tumor cell viability, tumor angiogenesis and immune cell response
- EphrinB2 and EphB4 are highly expressed in urothelial tumors and are negative prognostic markers¹

1. Chandrashekar et al, Neoplasia 2017, PMID 28732212

EphrinB2 IHC

EphrinB2 ISH

H&E

 \geq 1% is considered positive

OS With Durvalumab + Tremelimumab vs Chemotherapy in the PD-L1 High Population (Secondary Endpoint)

FGF-3 inhibitor in selected patients with urothelial cancer.

			Siefker-Radtke et al ASCO 2018						
	Erdafitinib	INCB054828	Powles T ESMO 2018 (Review)						
Population	Platinum refractory	Platinum refractory							
Number	99	100	THOR: Randomised phase III erdafitinib vs chemotherapy						
Phase	Ш	Ш							
biomarker	Mutations and fusions	Mixed (2 cohorts)	Erdafitinib						
RR	40%	25%	chemotherapy						
PFS months	5.5 months (4.2-6)	na	yes Prior IO therapy						
Toxicity (grade 3)	Stomatitis Nail tox. Hypophosphatemia	Alopecia Fatigue Hypophoshatemia.	No Erdafitinib						
Median OS	9 .5 months (8-19)	NA	R pembrolizumab						

NORSE Phase 2 Study Design^a

- Sample size determination: Assuming a true ORR of 45% in the erdafitinib arm and 55% in the erdafitinib + cetrelimab arm, n ≈ 45 patients in each arm would result in an estimated ORR that is above a 95% CI lower bound of 30% and 40%, respectively
- A review of safety and efficacy data was planned per the data review committee charter when ~40 patients were response-evaluable

DCR, disease control rate; DOR, duration of response; IV, intravenous; ORR, overall response rate. ^aEnrollment began in April 2018. The data cut-off for this analysis was July 19, 2021.

NORSE: Antitumor Activity Over Time

· Patients in both treatment arms had a durable reduction in the sum of target lesion diameters over time

• Median of the maximum reduction in the sum of target lesion diameters was 28% in the erdafitinib arm and 51% in the erdafitinib + cetrelimab arm ^aComplete responses include patients who had sum of target lesions > 0 mm; in patients with lymph node target lesions, a diameter < 10 mm is required for complete response per RECIST 1.1.

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

NORSE: Antitumor Activity Over Time, by *FGFRa* type and PD-L1 status

- Responses were observed in patients with both FGFR mutations and fusions
- In patients with PD-L1 low status, responses were observed in 50% in the erdafitinib arm (5 of 10) and in 71% patients in the erdafitinib + cetrelimab arm (5 of 7); few patients with PD-L1 positive status had available data at the time of this analysis

2021 ESVO

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Powles et al 2021

FGFR DNA alterations from tissue at ctDNA strongly correlate

An adaptive, biomarker-directed platform study of durvalumab in combination with targeted therapies in advanced urothelial cancer

Presence of new FGFR3 clones at progression on FGFR using personalised ctDNA analysis.

Phase 3 IMvigor010 adjuvant study in MIUC

Endpoints

- Primary: DFS (ITT population)
- Key secondary: OS (ITT population)
- · Other: Safety
- Exploratory: predictive, prognostic and pharmacodynamic biomarkers in tumour tissue and blood and their association with disease recurrence

- IMvigor010 did not meet its primary endpoint (DFS in the ITT population)¹
 - A pre-planned interim OS analysis was performed but could not be formally tested
 - OS follow-up is immature and ongoing in the ITT population
- The PD-L1 and TMB biomarkers did not identify patients benefitting from atezolizumab vs observation in the ITT population
- A pre-specified ctDNA biomarker analysis was performed

Evaluation of ctDNA in IMvigor010

29

- 1. Tumour tissue and germline material were sequenced (whole exome sequencing)
- 2. Up to 16 mutations for personalised mPCR ctDNA assay were identified for each patient

C, cycle; D, day;

- Plasma samples were sequenced to ≈100,000×
- If ≥2 mutations were detected, sample was defined as ctDNA(+)
- 5. MRD sample timepoint before adjuvant treatment (C1D1) was collected
- 6. On-treatment sample (C3D1; week 6) was also collected

Powles et al. IMvigor010 ctDNA https://bit.ly/2lxYIIE

ctDNA is expresses across broad clinical subgroups and have high expression of cell cycle and keratin genes.

ctDNA(+) patients have poor prognosis

IMvigor010 confirmed the prognostic value of ctDNA status

ctDNA(+) patients in the BEP had improved DFS and OS with atezolizumab vs observation

ctDNA clearance was associated with improved outcomes in the atezolizumab arm

 ctDNA clearance occurs at a higher rate in the atezolizumab vs observation arm (C1 → C3) Assessed using

ctDNA clearance was associated with improved DFS and OS outcomes in the atezolizumab arm

33

ctDNA levels also fall with neoadjuvant atezolizumab in MIBC.

Outcome in ctDNA+ve patients is related to tissue based immune biomarkers

Powles et al Nature 2021

Adjuvant Atezolizumab vs Placebo in High-Risk Muscle-Invasive Bladder Cancer Who Are ctDNA Positive Following Cystectomy (IMvigor011)

RC48-ADC in Advanced HER2+ Urothelial Cancer

- In an open-label, multicenter, single-arm, non-randomized phase II study 43 eligibility patients
- HER2-positive (IHC 2+ or 3+)
- 51% confirmed objective response rate (cORR) per independent central review.
- The most commonly observed treatment-related adverse events included hypoesthesia (numbness), alopecia and hemotoxicity.
- The presented results are expected to support a global late stage clinical trial, including

- The first generation of biomarkers for single agent ICIs (PD-L1 and TMB) have not changes therapy in metastatic disease. They may have a role in combination with other biomarkers or therapies.
- T effector gene RNA signatures continue show a strong relationship with response but have not (and may not) be utilized.
- There is a rapid move towards circulating biomarkers with much promise.
- Novel combinations are developing new biomarkers. It would be good to not make the same mistakes.
- Tissue based and circulating biomarkers in combination may be transformative.