Intratumoral Immunotherapy

Howard L. Kaufman Massachusetts General Hospital Boston, MA

Disclosures

- I am an employee of Immuneering Corporation
- I am a consultant to Replimune, Inc.

Agenda

- Definition, rationale and history of intratumoral immunotherapy
- Types of intratumoral immunotherapy (ITIT)
 - Physical
 - Drug-related
- Pre-clinical issues
- Clinical and Logistical issues
- Integrating ITIT into combination approaches

Intratumoral Immunotherapy

Definitions and Rationale

Hot vs. cold tumor microenvironment

✓ A major goal of modern
IO therapy is to establish
Immune-inflamed ("hot")
tumor microenvironments

Tumors arise in complex – and constantly evolving - microenvironments

Malinovskaya et al. Front Oncol 2019

What is intra-tumoral Immunotherapy?

- Therapeutic approach that delivers IO drugs directly into the tumor microenvironment
 - May be physical or chemical
 - Can be given by direct injection; or
 - Regional intra-vascular injection
 - Systemic delivery with local activation in the TME?
- Focuses on generating local immune responses
 - May also induce systemic immunity
- Expected to have a more favorable safety profile compared to systemic drug delivery

History of Intra-tumoral Therapy of Cancer

Intratumoral therapy promotes local and regional immune activation

oda M, et al. Mol Ther. 2000;2(4):324-239. Hawkins LK, et al. Lancet Oncol. 2002;3(1):17-26. Varghese S, et al. Cancer Gene Ther. 2002;9(12):967-978. Dranoff G. Oncoger 192. Liu BL, et al. Gene Ther. 2003;10(4):292-303. Eager R, et al. Mol Ther. 2005;12(1):18-27. Hu JC, et al. Clin Cancer Res. 2006;12(22):6737-6747. Fukuhara H, et al. Curr 192. Liu BL, et al. Gene Ther. 2003;10(4):292-303. Eager R, et al. Mol Ther. 2005;12(1):18-27. Hu JC, et al. Clin Cancer Res. 2006;12(22):6737-6747. Fukuhara H, et al. Curr 192. Liu BL, et al. Gene Ther. 2003;10(4):292-303. Eager R, et al. Mol Ther. 2005;12(1):18-27. Hu JC, et al. Clin Cancer Res. 2006;12(22):6737-6747. Fukuhara H, et al. Curr

Intratumoral therapy *may* induce systemic immunity (i.e. abscopal or anenestic effect)

How cells die makes a difference

NECROSIS	APOPTOSIS		
Always pathological	May be physiological or pathological		
Affects adjacent group of cells	Affect single cells		
Cell size is increased	Cell size is shrunken		
Passive	Active		
Causes inflammatory reaction	No inflammatory reaction		

Plasma membrane is disrupted

Plasma membrane is intact

Type of cell death has implications for generating cell-specific immune responses

Immunogenic cell death

Galluzzi et al. Nature Immunol. 2017

Traditional ICD measured by release of DAMPs

Courtesy Dr. Cory Hogaboam Bommareddy et al. Oncolimmunol. 2018

Ecto-calreticulin exposure denotes ICD

Mock

T-VEC 24 hr.

Ecto-calreticulin (green)

Hou et al. Cell Death Dis 2013 Bommareddy et al. Oncoimmunol. 2018

Contemporary definition: Immune induction

Kepp, Galluzzi, et al. Cancer Metastasis Rev 2011 Bommareddy et al. Science Transl Med 2018

Spatiotemporal "sensing" of ICD by the immune system

Intratumoral immunotherapy may have an *in* situ vaccination effect

Sheen and Fiering WIREs 2018

Benefits of Intra-tumoral Immunotherapy

- Allows direct access to multiple cells in the tumor microenvironment
- Able to use established tumor features (e.g., in situ vaccine effect)
- No need to identify tumor-associated antigens
- Generally has been associated with limited toxicity
- Easy to promote serial biopsy and biomarker analyses

Intratumoral Immunotherapy

Types of Intratumoral Therapy

Types of Intra-tumoral therapy

- Physical (Ablative) therapies
 - Cryotherapy
 - Microwave and Radiofrequency ablation
 - Focused ultrasound
 - Hyperthermia
 - Radiation
 - Electroporation
- Drug-related therapies
 - Oncolytic viruses
 - Direct Delivery of Anti-neoplastic Agents
 - Intraumoral cytokines
 - Intratumoral immune checkpoint inhibitor mAbs
 - Intratumoral immune agonists (TLR, cGAS-STING)
 - Intratumoral cell therapy (DC, T cells, etc.)
 - Intratumoral chemotherapy
- Combination therapy
 - Intratumoral and intratumoral
 - Intratumoral and systemic

Physical Intratumoral Therapy

Cryotherapy

- Toxicity:
- Pain
- Hemorrhage
- Edema
- Numbness
- Neuropathy
- Alopecia

Microwave and Radiofrequency Ablation

- Tumor entered with thin needle and probe
- Apply electrical current (radiofrequency) or microwave energy
- Tumor necrosis induced
- Residual scar left behind

High-intensity Focused Ultrasound

- Non-invasive therapeutic technique
- Uses lower frequency and continuous waves
- Induces thermal damage in tissue (65-85 °C)
- Pulsed waves induce mechanical damage
- Can use with ultrasound or MRI imaging
- HIFU approved in U.S. for prostate cancer treatment in 2015
- Many other tumors under study

Hyperthermia

How does hyperthermia mediate anti-tumor activity?

Radiation Therapy

Electroporation

Electric

Electrochemotherapy

Types of Electroporation

Robot-assisted irreversible *in vivo* electroporation of hepatic metastases

Drug-related Intratumoral Therapy

Intratumoral chemotherapy and electrochemotherapy

 \wedge

Courtesy Julie Gehl

Electrochemotherapy with bleomycin

PV-10 in melanoma

Overall best response First treatment Second treatment Third treatment Fourth treatment

Complete response	13	8	3	1
Partial response	24	12	3	-
Stable disease	3	4	1	-
Progressive disease	5	5	-	-
Total	45	29	7	1

In-transit mets 45 patients

- 87% ORR
- 42% CR

Read et al. J Surg Oncol 2018

Oncolytic Viruses

- Selective cytotoxicity
 - Tumor ICD
- Induction of immunity
- Favorable safety profile

Oncolytic Viruses

	Adenovirus	Vaccinia virus	Herpesvirus	Parvovirus H1
		190 kb 70–100 nm	200 nm	€ kb 18-28 nm
Baltimore classification	Group I: dsDNA	Group I: dsDNA	Group I: dsDNA	Group II: ssDNA
Family	Adenoviridae	Poxviridae	Herpesviridae	Parvoviridae
Virion	Naked	Complex coats	Enveloped	Naked
Capsid symmetry	Icosahedral	Complex	lcosahedral	Icosahedral
Replication site	Nucleus and cytoplasm	Cytoplasm	Nucleus and cytoplasm	Nucleus and cytoplasm
Cell receptor	CAR	Unknown	HVEM, nectin 1, nectin 2	Sialic acid residues
Nuclear integration	+	+	+	+
Transgene capacity	++	+++	+++	N/A
Wild-type virus infects non-replicating cells	-	-	-	+
Virulence of wild-type virus	+/-	+/-	-	+
Antivirals	+	+	+	-
Immunogenicity	-	-	-	+
Haemagglutination	-	-	-	+
Blood–brain barrier penetration	-	-	-	+
Achievable titre (PFU per ml)	1012	10 ⁹	10 ¹⁰	5×10 ⁸
MTD	3×10 ¹²	3×10 ⁹	10 ⁹	N/A

	Reovirus	Coxsackievirus	Seneca Valley Virus	Poliovirus	Measles virus	Newcastle disease virus	Vesicular stomatitis virus
	23 kb 75 nm		7 kb 	30 nm	16 <i>k</i> b	15 kB 10-500 nm	80 nm
Baltimore classification	Group III: dsRNA	Group IV: ssRNA	Group IV: ss(+) RNA	Group IV: ss(+) RNA	Group V: ss() RNA	Group V: ss(–) RNA	Group V ss(–) RNA
Family	Reoviridae	Picornaviridae	Picornaviridae	Picornaviridae	Paramyxoviridae	Paramyxoviridae	Rhabdoviridae
Virion	Naked	Naked	Naked	Naked	Enveloped	Enveloped	Enveloped
Capsid symmetry	Icosahedral	Icosahedral	Icosahedral	Icosahedral	Icosahedral	Helical	Helical
Replication site	Cytoplasm	Cytoplasm	Cytoplasm	Cytoplasm	Cytoplasm	Cytoplasm	Cytoplasm
Cell receptor	Unknown	CAR/ICAM-1/ DAF	Unknown	CD155	SLAM and CD46	Unknown	LDLR
Nuclear integration	+	+	+	+	+	+	+
Transgene capacity	N/A	N/A	N/A	N/A	+	+	+
Wild-type virus infects non- replicating cells	+	-	+	-	-	-	+
Virulence of wild- type virus	+	+/-	+	-	-	+	+
Antivirals	-	-	-	-	-	-	-
Immunogenicity	-	-	+	+/-	-	-	-
Haemagglutination	-	+	+	+	-	-	-
Blood–brain barrier penetration	+	-	+	+	-	+	-
Achievable titre (PFU per ml)	10º	10º	N/A	10 ⁸	1011	108	2×1010
MTD	3×1010	10°	10 ¹¹ VP per kg	NA	10°	Initial 10º; subsequent 10 ¹⁰	N/A

Intratumoral cytokines: IL-2

Phase 2 study of 24 stage III and IV melanoma patients with IL-2 IT

- 245 lesions treated in 24 patients
- CR seen in 85% (n-209) of lesions and 62.5% of patients (n=15)
- PR seen in 6% (n=21) of lesions and 21% (n=5) of patients
- Toxicity limited to grade 1-2 events

Meta-analysis of 49 studies of intralesional IL-2 for in-transit melanoma

- Six studies met criteria for analysis
- Overall, 2,182 lesions in 140 patients were treated
- CR occurred in 78% of lesions
- CR occurred in 50%
- Treatment well tolerated
 - Local pain and swelling
 - Mild flu-like syndrome
- Only three grade 3 adverse events
 - Rigors, Headache, Fever and Arthralgia
Intralesional Adenovirus-Mediated IL-2 Gene Transfer for Advanced Solid Cancers and Melanoma

Clinical Response of an Injected Tumor

17% (6/35) of patients had intralesional responses, 4 with concomitant stable disease (SD) in noninjected lesions

Inflammatory Response After 2 Injections

Dummer R, et al. Mol Ther. 2008;16(5):985-994.

Intratumoral immune checkpoint inhibitor mAbs

www.impactjournals.com/oncotarget/

Oncotarget, Vol. 7, No. 39

Clinical Research Paper

A phase I study of intratumoral ipilimumab and interleukin-2 in patients with advanced melanoma

Abhijit Ray^{1,*}, Matthew A. Williams^{2,*}, Stephanie M. Meek², Randy C. Bowen³, Kenneth F. Grossmann¹, Robert H.I. Andtbacka⁴, Tawnya L. Bowles⁵, John R. Hyngstrom^{4,5}, Sancy A. Leachman⁶, Douglas Grossman¹, Glen M. Bowen¹, Sheri L. Holmen¹, Matthew W. VanBrocklin¹, Gita Suneja⁷ and Hung T. Khong¹

- T-cell receptor PD-1 PD-1 PD-1 PD-L1 PD-L1
- 12 patients; 3+3 design; 8 weeks of tx
- IL-2 at 3 MIU and dose escalation of ipilimumab (0.5 2 mg)
- No DLTs
- Grade 3 events of hyponatremia (1) and local ulceration (5)
- Local response 67%
- Abscopal response 89%
- ORR by irRC 40%

Courtesy Genekor Ray et al. Oncotraget 2016

Intratumoral cell therapy (DC, T cells, etc.)

- Ex vivo modified cells
- In vivo modified cells
- Adoptive transfer and CART depend on recruitment to and function within the TME

Intratumoral STING immune agonists

- Stimulator of Interferon Genes
- Identified by expression cloning using IFN-beta reporter
- Allows foreign DNA sensing at the intra-cellular level
- Activates innate immunity
- Potent anti-viral activity
- Senses tumor DNA
- Agonizing STING can promote anti-tumor activity

STING and oncolytic viruses

Decreased viral pathogenicity Increased viral clearance Protects normal cells from viral killing

Increased tumor cell killing Decreased viral clearance May increase viral immunogenicity

Khoo and Chen EMBO Rep 2018

Toll-like receptor agonists

Intra-lesional TLR and STING agonists induce therapeutic responses in murine B16 melanoma

Courtesy Aduro

Multiple STING and TLR agonists in clinical development

Drug candidate	Companies	Target (drug modality)	Status
MK-1454	Merck & Co.	STING (cyclic dinucleotide)	Phase I monotherapy and combination
ADU-S100	Aduro Biotech/Novartis	STING (cyclic dinucleotide)	Phase I monotherapy and combination
STING agonist	IFM Therapeutics/BMS	STING (cyclic dinucleotide)	Preclinical
STING agonist	Nimbus Therapeutic	STING (small molecule)	Preclinical
NLRP3 agonist	IFM Therapeutics/BMS	NLRP3	Phase I to start in Q1 2018
RGT100	Rigontec/Merck & Co.	RIG-I (oligonucleotide)	Phase I/II
IMO-2125	Idera Pharmaceuticals	TLR9 (oligonucleotide)	Phase I/II

BMS, Bristol-Myers Squibb; NLRP3, NOD-, LRR- and pyrin domain-containing protein 3; RIG-I, retinoic acid inducible gene 1; STING, stimulator of interferon genes; TLR9, Toll-like receptor 9.

Clinical trial results of TLR9 agonist monotherapy

Agent	Treatment Arms	Study Phase	Cancer Type	No. Patients	Results	References
PF-3512676	PF-3512676 8 mg vs. saline	Phase II randomized	Early stage melanoma	24	In the experimental arm: larger sentinel lymph nodes (SLN), higher SLN leucocytes, higher maturation markers of DC, lower T- reg, increased cytokines	Molenkamp <i>et al.</i> [<u>61,62]</u>
PF-3512676	PF-3512676 0.01–5/10 mg	Phase I	BCC and advanced melanoma	10	Local tumor regression, post-treatment cytokines levels reduction, dense intra- and peri-tumoral lymphocytic infiltrates	Hofmann <i>et</i> al. [<u>63]</u>
PF-3512676	PF-3512676 6 mg	Phase II	Advanced melanoma	20	PR = 10%, CR = 5%, SD = 15% (DCR = 30%)	Pashenkov et al. [64]
PF-3512676	PF-3512676 0.08, 0.12, 0.16, 0.36, 0.54, 0.81 mg/kg	Phase I/II	Metastatic RCC	39	PR = 5%, DCR = 30%	Thompson et al. [<u>65]</u>
PF-3512676	PF-3512676 10 mg vs. PF-3512676 40 mg vs. PF-3512676 40 mg + DTIC 850 mg/m ² vs. DTIC 850 mg/m ²	Phase II randomized	Untreated advanced melanoma	184	Higher ORR (16%) for PF-3512676 40 mg + DTIC 850 mg/m ² no differences in mTTP and mOS	Weber <i>et</i> al. [<u>66]</u>
PF-3512676	PF-3512676 0.2 mg/kg + taxane/platinum vs. taxane/platinum	Phase II randomized	Untreated advanced NSCLC	117	Higher ORR for PF-3512676 0.2 mg/kg + taxane/platinum (38% vs. 19%) Longer mOS PF-3512676 0.2 mg/kg + taxane/platinum (12.3 vs. 6.8 ms)	Manegold et al. [<u>67]</u>
PF-3512676	PF-3512676 0.2 mg/kg + CBDCA/TXL vs. CBDCA/TXL	Phase III	Untreated advanced NSCLC	828	No significant differences in mOS neither mPFS	Hirsh <i>et al.</i> [<u>68]</u>
PF-3512676	PF-3512676 0.2 mg/kg + CDDP/GEM vs. CDDP/GEM	Phase III	Untreated advanced NSCLC	839	No significant differences in mOS neither mPFS	Manegold et al. [67]

Intratumoral Immunotherapy

Pre-clinical Issues

Pre-clinical Issues

- Are tumor cells sensitive to drug entry?
- Are tumor cells killed? How?
- Biodistribution is important
 - Does drug remain in tumor (i.e. tumor cell restriction)?
 - Does drug leak to other sites (i.e. other cells in TME, distant tumors, normal tissue)?
- Need tumor model that incorporates injected and un-injected tumor (i.e., Is there an abscopal or anenestic effect?)
- Dose-response relationships should be defined
 - Anti-tumor vs. anti-viral immunity
- Dosing schedule and routes are important to validate

Oncolytic viruses utilize specific cell surface entry receptors

Nature Reviews | Drug Discovery

Kaufman, Kohlhapp, and Zloza Nat Rev Drug Discov. 2015 Sep;14(9):642-62

HSV-1 utilizes HVEM, Nectin-1 and Nectin-2 to enter tumor cells

T-VEC induces lysis of SK-MEL-28 melanoma cells in a dose response manner [*In vitro* lysis assay]

Liu et al Gene Therapy 2003

Dose-response lysis of various melanoma cell lines

T-VEC induces lysis of human tumor cell lines [*In vitro* lysis across cell lines]

Cell lines	Tissue	Cell survival (%) (MOI=1) 24 hrs 48 hrs 3 days 6 days			6 days
A549	Lung cancer	82.5	76.0	55.8	43.1
H460	Lung cancer	65.2	64.0	44.0	27.6
CALU-1	Lung cancer	71.1	60.0	41.9	40.4
PANC-1	Pancreatic cancer	74.6	57.6	24.1	9.4
MIA PACA-2	Pancreatic cancer	66.5	38.5	18.6	1.4
CAPAN-1	Pancreatic cancer	81.0	42.2	56.6	20.3
BxPC-1	Pancreatic cancer	57.6	15.1	16.1	8
HCT116	Colorectal cancer	65.7	27.4	14	1.1
HT29	Colorectal cancer	51.6	22.0	24.3	3.9
SW620	Colorectal cancer	80.4	66.8	45.0	3.9
COLO205	Colorectal cancer	49.8	20.0	9.7	3.1

Liu et al Gene Therapy 2003

Intratumoral therapy should report injected and un-injected tumor responses

Hamilton et al. Cell 2018 Thomas et al. JITC 2019

Consideration of anti-viral immune response

Hu et al. Clin Cancer Res 2006

Intratumoral Immunotherapy

Clinical and Logistical Issues

Clinical Issues

- Subject eligibility
 - Tumor size
 - Tumor location (e.g., access)
- Drug delivery
 - Dose vs. volume
 - Schedule
 - Intra-tumoral vs. intra-venous
 - Which lesions to inject or treat?
- Endpoints
 - Injected (treated) lesions
 - Un-injected (un-treated) lesions [abscopal or anenestic responses]
 - Biomarkers (local vs. distant or systemic)

Logistical issues associated with intra-tumoral immunotherapy

- Drug delivery
- Access to visceral sites
 - Image-guided delivery is possible
 - Some sites challenging (e.g., brain, bone, liver dome, etc.)
- Biosafety issues
- Leaking from the tumor site
- Endpoint assessment
 - Need to document injected sites and non-injected sites
 - Abscopal (anenestic) responses may utilize different MOA, kinetics

Lessons Learned from Talimogene laherparepvec (T-VEC)

Bommareddy et al. Am J Clin Dermatol 2016

OPTiM Phase III Study Design

Patients were to remain on treatment for at least 24 weeks despite progression (unless intolerability or investigator decision to start new therapy)

^a Dosing of T-VEC was $\leq 4 \text{ mL x10}^6$ pfu/mL once, then after 3 weeks, $\leq 4 \text{ mL x10}^8$ pfu/mL Q2W Treated 24 weeks with PD ^b Dosing of GM-CSF was 125 µg/m² subcutaneous daily x14 days of every 28 day cycle.

Volume determination for T-VEC

Lesion size (longest diameter)	T-VEC injection volume		
>5 cm	Up to 4 mL		
>2.5–5 cm	Up to 2 mL		
>1.5–2.5 cm	Up to ImL		
>0.5–1.5 cm	Up to 0.5 mL		
≤0.5 cm	Up to 0.1 mL		

Abbreviation: T-VEC, talimogene laherparepvec.

Starting dose 10⁶ PFU/mL Maintenance dose 10⁸ PFU/mL every 2 weeks

Volume associated with tumor diameter

T-VEC improves objective and durable response rates

ITT Set	GM-CSF (N=141)	T-VEC (N= 295)	Treatment Difference (T-VEC – GM-CSF)
Overall Response Rate (95% CI)	5.7% (1.9, 9.5)	26.4% (21.4, 31.5)	20.8% (14.4, 27.1) <i>P</i> < 0.0001 ^a descriptive
CR	0.7%	10.8%	
PR	5.0%	15.6%	

ITT Set	GM-CSF (N=141)	T-VEC (N= 295)	Treatment Difference (T-VEC – GM-CSF)
Durable Response Rate	2.1%	16.3%	14.1% 95% CI: (8.2, 19.2) <i>P</i> < 0.0001 ^a

Kaufman et al. JCO 2015

Final analysis of OPTiM trial shows sustained clinical benefit

Time to Response And Duration of Response

Stage IIIb/Stage IIIc 📕 Stage IV M1a 📕 Stage IV M1b 📕 Stage IV M1c

Tumor regression in injected lesions is greater than in non-injected lesions

T-VEC improved overall survival

OS subgroup analysis by disease stage

OPTiM shows sustained OS benefit at <u>49 months</u> median follow-up

ITT Population

Stage III-IVM1a

Andtbacka et al. JITC 2019

Intratumoral Immunotherapy

Integrating Into Combination Therapy

Initial results of SD-101 and pembrolizumab

Best Overall Response Rate (ITT)	2 mg/lesion (N=45)	8 mg/lesion (N = 41)	
Objective response rate (ORR), n (%) (95% CI)	34 (76) (61, 87)	20 (49) (33, 65)	
Complete response	8 (18)	4 (10)	
Partial response	26 (58)	16 (39)	
Stable disease	2 (4)	7 (17)	
Progressive disease	5 (11)	9 (22)	
Not evaluable†	4 (9)	5 (12)	
Time to response, median (months)	2.2	2.3	
Duration of response (DOR), median (months) (95%CI)	not reached (NE, NE)	not reached (14.2, NE)	

TLR9 agonist

† Patients discontinued prior to first scan: 2 mg-clinical progression (n=3), consent withdrawn (n=1); 8 mg-clinical progression (n=2), irAE/AE (n=2), withdrew consent (n=1). NE, not estimable; ITT, intent to treat

Note: The concordance between blinded central assessment and investigator assessment on a subset of the 2 mg group (n=38) was 89%

ORR in patients with BRAF mutant tumors who received 2 mg/lesion (n=18) was 61%

ORR in patients with PD-L1 negative tumors who received 2 mg/lesion (n=14) was 79%

Long et al. ESMO 2018 Milhem et al. ASCO abstract CT144 2019

Study Schema for the phase 1b/II trial of T-VEC and Ipilimumab

T-VEC dosing until CR, all injectable tumors disappeared, PD per irRC, or intolerance whichever comes first.

Primary Endpoint (Ph 1B):Incidence of dose-limiting toxicities (DLTs)Primary Endpoint (Ph II):ORR determined by irRCKey Secondary Endpoints:BOR, PFS, DoR, time to response, safety

^a Dosing of T-VEC was δ 4 mL × 10⁶ PFU/mL once, then after 3 weeks, δ 4 mL × 10⁸ PFU/mL Q2W.

Randomized Phase 2 Clinical Trial: T-VEC + ipilimumab improves ORR

- T-VEC + ipilimumab vs. ipilimumab alone Stage IIIb-IVM1c melanoma
- Response rates (N=198) more than doubled with T-VEC + ipilimumab vs. ipilimumab alone (38% vs. 18%)
- For visceral lesions (none injected), the response rate was 35% for T-VEC +ipilimumab vs. 14% for ipilimumab alone
- No additional toxicity as compared to ipilumumab alone

Phase 1 clinical trial of T-VEC and pembrolizumab in melanoma

Without added toxicity

Ribas et al. Cell 2017
T-VEC induces CD8+ T cell recruitment and PD-L1 expression in the TME

PD-L1 CD8 S100

T-VEC + pembrolizumab induces CR in immunologically deserted tumors

T-VEC and MEK inhibition promotes tumor regression in the SK-MEL-28 xenograft melanoma model

TVEC and MEKi reduces tumor growth in immune competent D4M3A melanoma model

50

20

Days post-implantation

10

0

30

40

0

50% survival

Bommareddy et al, Sci Trans Med. 2018

10 20 30 40 50 60 70 80 90 100

Days post-implantation

PD-1 blockade augments T-VEC + MEKi combination treatment

Bommareddy PK et al, Sci Trans Med. 2018

Outstanding Issues with IT therapy

- How should eligibility be modified from standard clinical studies?
- Regulatory requirements for biodistribution are evolving
- Should all tumor be injected?
- Can IT agents be delivered by intravenous route?
- What are appropriate clinical endpoints?
 - Monitoring of injected vs. un-injected lesions
- What is the optimal schedule for treatment (including when to stop), especially in combination with other agents?
- How should component contributions be confirmed?
 - Clinical vs. biomarker validation
- How long should contact transmission be monitored?
- Is neoadjuvant treatment better?

Intravenous delivery of IT agents

Table 1 Selected studies of intravenous oncolytic virus delivery

Study	OV species	Tumors targetad	Sample size	Dose range	Treatment schedule	Intratumoral OV analysis	Adverse events
Machiels et al. [5]	Adamovirus	Epith dial adeno Carcinomas	61	1×10 ¹⁸ -1× 10 ¹³ vp	Days 1, 3 and 5 weekly and every 3-week schedule	One patient with colorectal can or abdominal wall metastasis sample was + by IHC and gPCR 39 days after treatment.	Hyposla, lymphopenia, neutropenia
Nemunaitis et al. Dil	Ad en ovirus (DNVX-015)	Solid tumors metaratic to lung	10	2×10 ¹⁰ -2× 10 ¹³ yp	Weekly in 21 day cycle	qPCR and IHC Virus sean in one tumor biopsy	flu-like symptoms, transi ent transamini tis
Hamid et al. [9]	Ad en ovirus	Metalatic colorectal cancer	18	2×1012 vp	Every 2 weeks	One autopsy patient with tumor at the root of the misientery by PCR and IHC	fullie symptoms, chills, fotigue and litth argy
Rudin et al. [10]	Senieca valley Vitus	Small cell lung cancer and carcinoid tumors	30	10 ⁷ - 10 ¹¹ VP	Single diose	qPCR and IHC on eautopsy-derived tumor had + IHC for virus	flu-like symptoms
Park et al. [11]	Vaccini a virus- GM-CSF	Treatment-reflactory colorectal cancer	15	$1 \times 10^6 - 3 \times 10^7 \mu h$	Every 14 days	Plaque assay on plasma and throat swabs	flu-like symptoms
Downs-Canner et al. [12]	Vaccini a virus	Advanced colorectal or other solid cancers	11	3×10 ⁶ -3× 10 ⁶ píu	Single dicse	qPCR Plaque assay detected 2.5×103 pfu in one patient	fever, chills, abdominal pain, nausea, vomiting, fittigue
Garda et al. [] 3)	Ad en ovinus type 5	Metalatic melanoma	12	1×10 ¹³ yp	Single Infusion	qPCR Viral DNA was only detected in patients treated with dosis >3.3 × 10 ^m	fu-like syndrome fever, dhills, n eutropenia
Garda- Calbonero, et al. [7]	Adanovirus	Solid adenocarcin omas	17.12 by№ 5.by∏ inj	1 × 10 ¹³ ур	Days 1, 3 and 5 followed by turnor elsection	Virus hisson protein by IHC found in 10 patients > 80% nuclear statining seen in 21.1% of IT-inj, and 9.4% for M4nj. Tumor specimens	None
Mell et al. ()4)	Vaccini a virus	Head and neck can der	19	3×10 ⁴ -3× 10 ⁴ plu	Day 3 Day 3 and 8 Days 3, 8, 15 and 22 Redation 33–35 fractons Osplatin on days 1, 22 and 43	qPCR+ in Spatients (range 4–409 copies/ing) Virus (2.0×10 ⁹ ph) detected in tangue tumor in 1 patient at 7 days	Rigon, fever, fatigue, esh, hypotension, mucositis, nauses, vomiting
Samson et al. [15]	Reovinus	Brain tumors	9	1×10 ¹⁰ TCID ₅₀	Single one-hour infusion	HC for reovins 63 capsid protein was low in 6/9 tumors ig EM + in 9/9 EM+ 8/9 dPCB+ in 4/7	lymphopenia, flu-like symptoms

Abbeviations: igTM immunopid transmission electron microscopy, ity injection if intratumoni, // intratumoni, // intratumoni, pluplaque forming units, gPC2 quantitative polymerase chain reaction assay, TCD tissue culture infective does, vp viral particle

- Easier route to administer
- Potentially targets all metastatic lesions
- To date, appears safe
- But,
- Limited biodistribution a challenge
 - Immune clearance (i.e. Abs, complement)
 - Protein sequestration
- To date, limited efficacy reported
- Few studies report viable drug at tumor site

T-VEC neoadjuvant study shows promise

- 150 stage IIIb-IVM1a melanoma patients with at least one resectable 1 cm tumor
- No systemic treatment in prior 3 months
- Randomized to T-VEC 6 doses over 12 weeks followed by surgery weeks 13-18 or up-front surgery
- Primary endpoint is RFS

- CR 22.8% (13 of 57) in efficacy analysis set (17% in ITT population)
- R0 resection rate 56.1% (32 of 57) in T-VEC arm vs. 40.6% (28 of 69) in surgery-only arm
- RFS improved in T-VEC group HR 0.73 [80% CI, 0.56-0.93; P=0.048]
- OS improved in T-VEC group 95.9% vs. 85.8% in surgery-only group [HR, 0.47; 80% CI, 0.27-0.82)
- Median f/o only 20 months

Conclusions

- Intratumoral immunotherapy (ITIT) is defined as local delivery of agents that induce innate/adaptive anti-tumor immune responses
- There are many types of ITIT in clinical development
 - Physical approaches
 - Drug-based approaches
- ITIT has special pre-clinical considerations
 - Validate cell entry receptors, extent and type of cell lysis, local and distant anti-tumor activity in immune competent murine systems, immunogenicity
- ITIT has special clinical and logistical considerations
 - Must consider dosing, schedule, volume, biodistribution, anti-viral responses, eligibility and endpoint responses
- ITIT can be used as part of a rational combination approach
 - Neoadjuvant, IO combinations, non-IO combinations

Acknowledgments

Rutgers University

- Ann Silk, MD
- Andrew Zloza, MD, PhD
- Praveen Bommareddy, PhD

Funding

NCI UM1 CA 186716-01 NCI NO1 CA 10-034 NCI RO1 CA 093696 The Gateway Foundation

Mass General Hospital

- Sam Rabkin, PhD
- Robert Martuza, PhD
- Don Lawrence, MD
- Keith Flaherty, MD, PhD
- Ryan Sullivan, MD
- David Miller, MD, PhD
- Ken Tanabe, MD
- Genevieve Boland, MD, PhD
- Sara Pai, MD, PhD
- Kerry Reynolds, MD
- Alexandra-Chloe Villani, PhD