

# Immunotherapy for the Treatment of Hematologic Malignancies

Ronan Foley MD, FRCP(C)
Professor, McMaster University







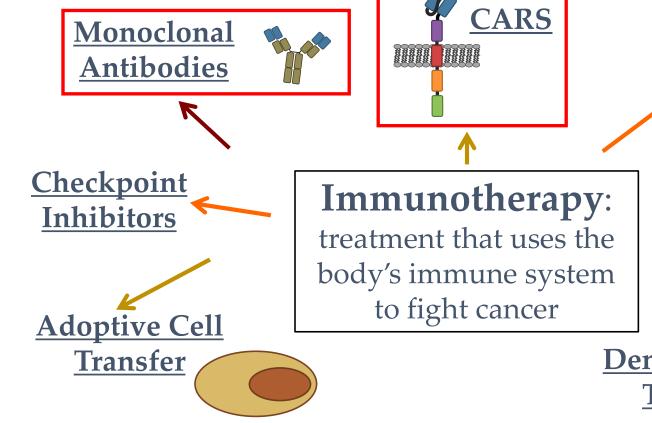




#### **Disclosures**

- Consulting Fees: Novartis, Gilead, BMS
- I will be discussing non-FDA approved indications during my presentation.

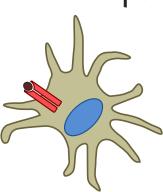










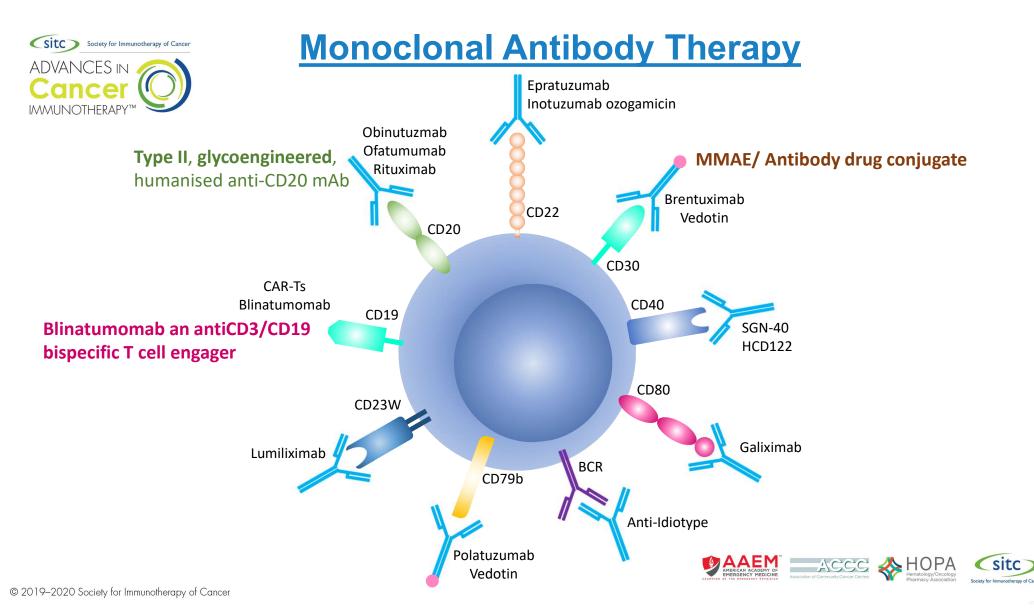


#### **Cancer Immunotherapy**
























#### **Obinutuzumab – a better anti-CD20?**

- The first Type II, glycoengineered, humanised anti-CD20 mAb<sup>1-3</sup>
  - Designed to provide an advancement in antibody technology<sup>1,3</sup>
- In preclinical studies comparing it with rituximab, GA101 showed:
  - Increased direct cell death induction<sup>1,3</sup>
  - Enhanced ADCC<sup>1</sup>
- GA101 is being evaluated in an extensive clinical trial programme in B-cell malignancies





- 1. Mössner E, et al. Blood 2010; 115:4393-4402; 2. Niederfellner G, et al. Blood 2011; 118:358-367;
- 3. Alduaij W, et al. Blood 2011; 117:4519-4529.









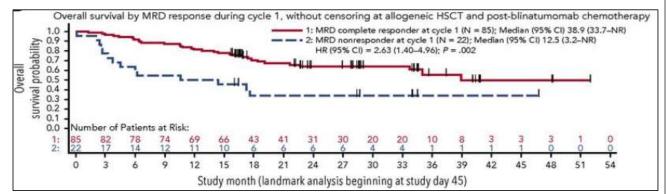



#### **BiTE (Blinatumomab) Therapy**

- Facilitates T cell engagement with CD19+ tumor cells (Similar to CD19 CAR T)
- Approval:
- Adult/pediatric R/R B-cell precursor acute lymphoblastic leukemia
- Adult/pediatric B-cell precursor acute lymphoblastic leukemia in 1st or 2nd complete remission, MRD ≥ 0.1%

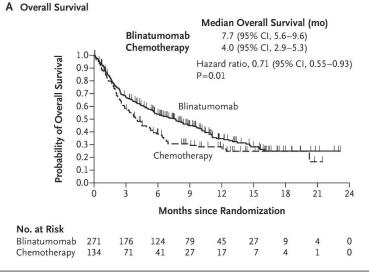











#### **Blinatumomab: B-ALL**





- Common adverse events include neurotoxicity and cytokine release syndrome, most often in first cycle of therapy
- Demonstrated improvements over standard-of-care for both MRD-positive B-ALL and relapsed/refractory B-ALL













## **CD20/CD3 targeting BiTEs in development**

| BSA (Company)                                | Descriptor                                                        | Development phase (disease)      |
|----------------------------------------------|-------------------------------------------------------------------|----------------------------------|
| REGN1979 (Regeneron) <sup>3</sup>            | Full-length IgG4                                                  | Phase I (NHL, CLL and lymphoma)* |
| XmAb13676 (Xencor) <sup>4</sup>              | IgG-like with modified Fc region                                  | Phase I (NHL, CLL)               |
| Mosunetuzumab (Roche/Genentech) <sup>1</sup> | Fully humanised, IgG1-like with modified Fc region                | Phase I/II (NHL)                 |
| CD20-TCB (Roche/Genentech) <sup>2</sup>      | Fully humanised, IgG1-like 2:1 format with fully silent Fc region | Phase I/II (NHL)                 |
| GEN3013 (GenMab)                             | DuoBody with IgG4 Fab-arm                                         | Phase I/II (NHL)                 |

These antibodies have the potential to overcome the PK limitations associated with blinatumomab

- 1. Sun LL, et al. Sci Transl Med 2015;7:287ra70; 2. Bacac M, et al. Oncoimmunol 2016;5:e1203498
- 3. Smith EJ, et al. Sci Rep 2015;5:17943; 4. Chu SY, et al Blood 2014;124:3111







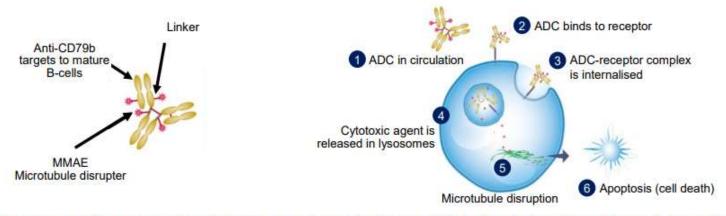




## **Antibody-Drug Conjugates**

| Drug                                              | Target antigen | Indication                                                                                 |
|---------------------------------------------------|----------------|--------------------------------------------------------------------------------------------|
| Brentuximab vedotin                               | CD30           | Classical Hodgkin lymphoma, relapsed after HSCT or ≥2 previous therapies                   |
|                                                   |                | Cutaneous anaplastic large cell lymphoma or CD30+ mycosis fungoides ≥ 1 previous therapies |
|                                                   |                | Classical Hodgkin lymphoma - first line with combination chemo                             |
|                                                   |                | Classical Hodgkin lymphoma consolidation after auto-HSCT                                   |
| Inotuzumab ozogamicin                             | CD22           | Relapsed/refractory/MRD+ B-cell ALL                                                        |
| Polatuzumab vedotin (w/ bendamustine & rituximab) | CD79b          | <b>DLBCL</b> ≥ 2 previous therapies                                                        |
| Gemtuzumab ozogamicin                             | CD33           | R/R or newly-diagnosed CD33+ AML in adults or pediatric patients                           |
| Belantamab mafodotin                              | ВСМА           | R/R multiple myeloma after > 4 prior therapies                                             |












#### Polatuzumab vedotin: DLBCL



Polatuzumab vedotin has demonstrated efficacy in R/R DLBCL in combination with rituximab<sup>1,2</sup> and rituximab-bendamustine<sup>3</sup>

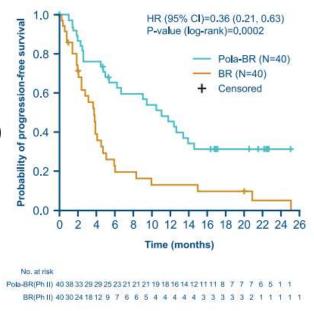
| Treatment                       | Best overall response |
|---------------------------------|-----------------------|
| Pola +/- rituximab              | 51-56%1,2             |
| Pola + rituximab + bendamustine | 68% <sup>3</sup>      |

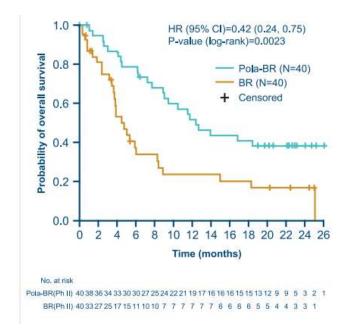
ADC, antibody-drug conjugate; MMAE, monomethyl auristatin E

 Palanca-Wessels A, et al. Lancet Oncol 2015;16:704–15; 2. Morschhauser F, et al. Lancet Hematology 2019;6:e254–65; 3. Sehn H, et al. Blood 2018;132:1683










#### Polatuzumab vedotin: DLBCL

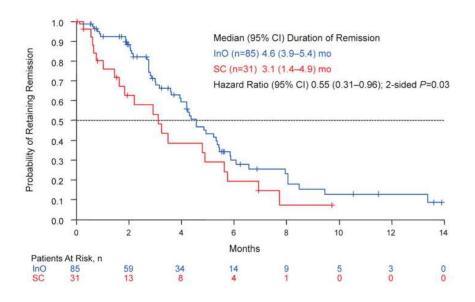
- Randomized phase 2 study
- Pola-BR vs. BR in R/R DLBCL
- Higher CR = 40% vs. 18% (p: 0.03)
- Median PFS = 7.6 m (HR=0.34, p<0.01)</li>
- Median OS = 12.4 m (HR=0.42, p<0.01)</li>
- Ongoing phase 3 (POLARIX)
- Frontline DLBCL- R-CHOP vs R-CHP+Pola

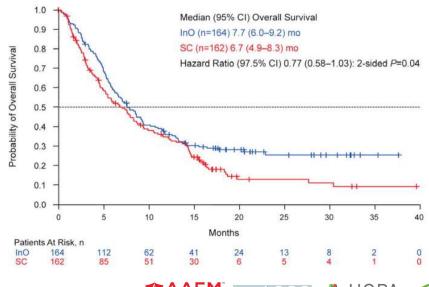










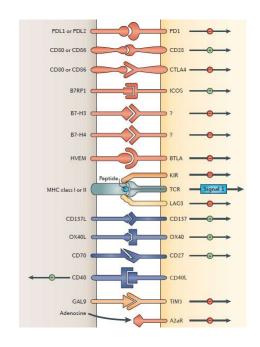



#### Inotuzumab ozogamicin for ALL

- Anti-CD22 antibody conjugated to calicheamicin
- Higher response, MRD-negativity, PFS, and OS than standard-of-care






Kantarjian, NEJM 2016.

Society for Immunotherapy of Cancer



## Role of the Immune Checkpoint

- We need the immune system to fight pathogens and help eliminate abnormal cells
- We also need to have controls on this system
  - Maintain tolerance and prevent injury to self tissue
- The immune checkpoint is the series of inhibitory signals for this system
  - While designed for self control, these signals can be exploited by cancer cells



**Cancer Cell** 

T-cell









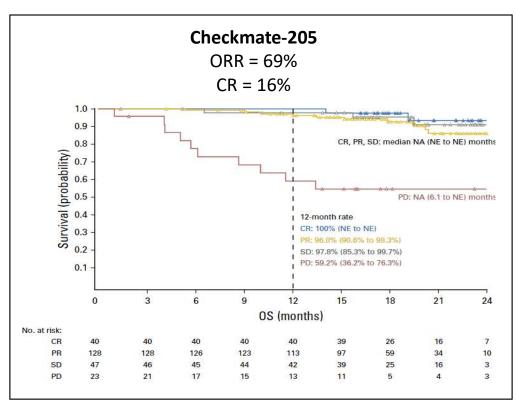


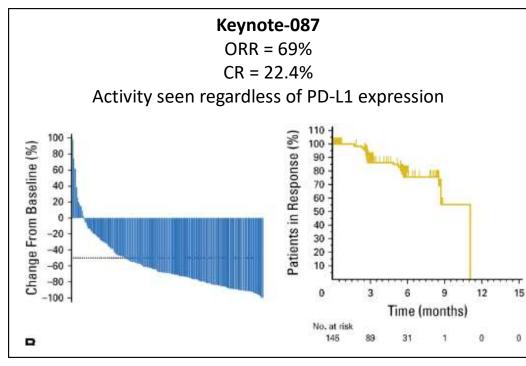
## **Checkpoint inhibitors: Lymphoma**

| Drug          | Indication                                                                                                           | Dose                                                                            |
|---------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Nivolumab     | Classical <b>Hodgkin lymphoma</b> , relapsed after HSCT and brentuximab vedotin or ≥3 previous therapies             | 240 mg Q2W or<br>480 mg Q4W                                                     |
| Pembrolizumab | Adult/pediatric refractory classical <b>Hodgkin lymphoma</b> or relapsed after 3 previous therapies                  | 200 mg Q3W or 400 mg Q6W<br>adults<br>2 mg/kg (up to 200 mg) Q3W<br>(pediatric) |
| Pembrolizumab | Adult/pediatric refractory <b>primary mediastinal large B-cell lymphoma</b> or relapsed after 2 previous therapies** | 200 mg Q3W or 400 mg Q6W adults  2 mg/kg (up to 200 mg) Q3W (pediatric)         |

<sup>\*\*</sup>Not recommended for patients with PBMCL that require urgent cytoreductive therapy.









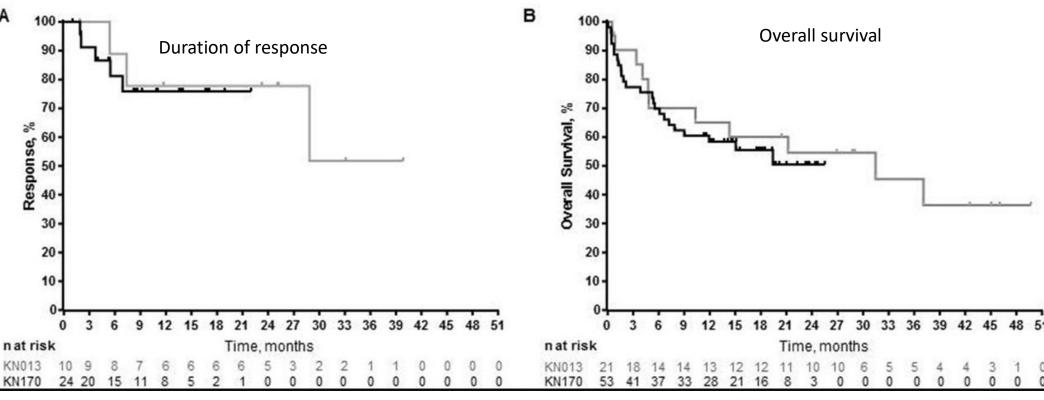

## **Checkpoint inhibitors: Hodgkin Lymphoma**





Armand, J Clin Oncol 2018. Chen, J Clin Oncol 2017.







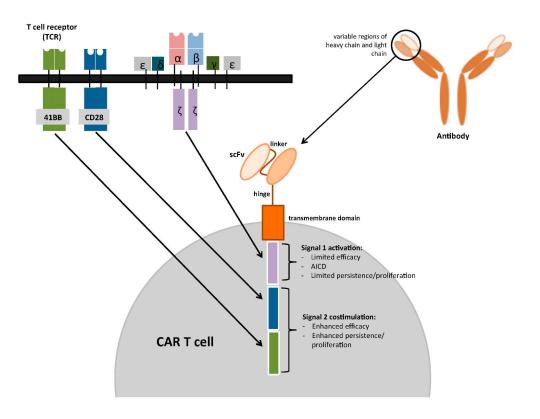





## Pembrolizumab in Primary Mediastinal Large B cell Lymphoma











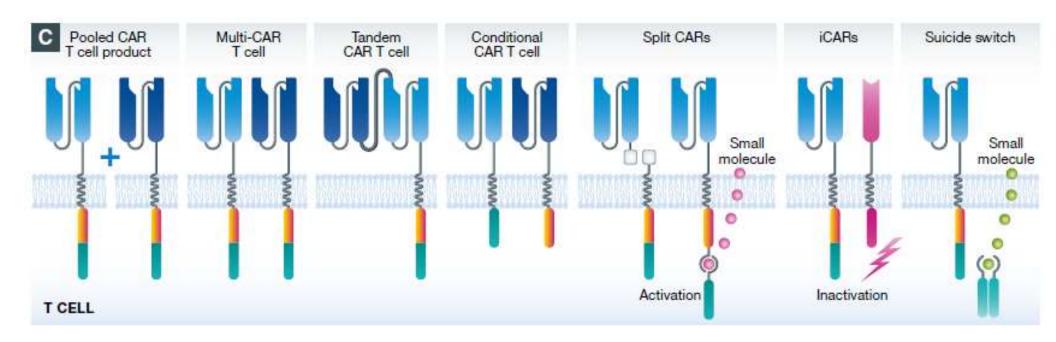

#### **Chimeric antigen receptors**

- Specific and potent: B specific, T - toxic
- Overcome immune tolerance
- Targets surface molecules in native conformation
- Independent of antigen presenting cell and MHC complex



Klampasta, Cancers 2017.









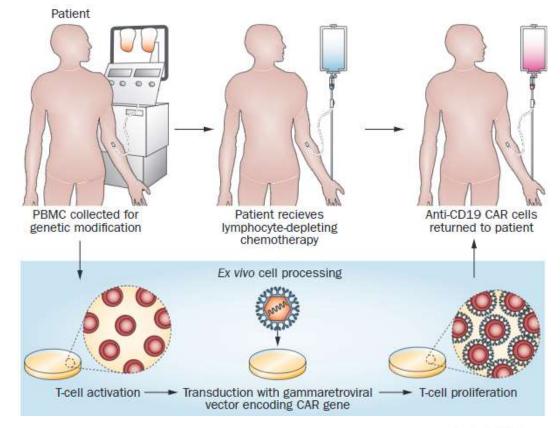



## Clinical development of CAR T cells



Hartmann et al. (2017), EMBO Molecular Medicine







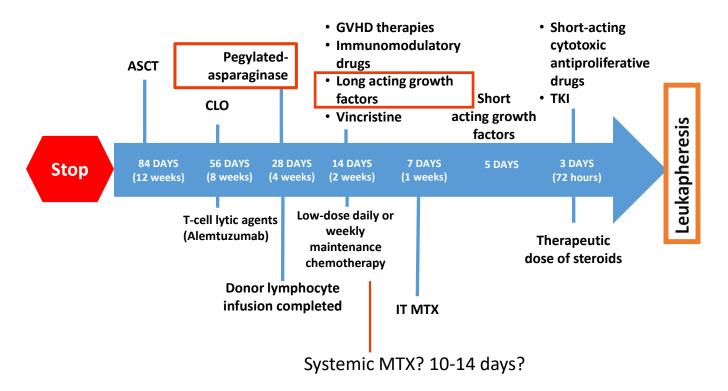





### **CAR T manufacturing and administration**











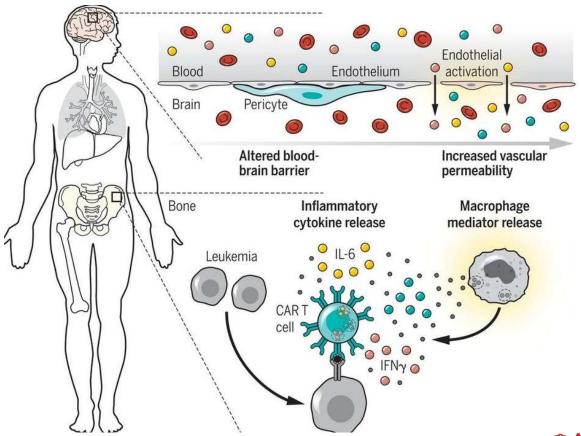



#### Leukapheresis washout: JULIET & ELIANA



- 1. Schuster SJ et al. N Engl J Med. 2019;380:45-56.
- 2. Maude SL et al. N Engl J Med. 2018;378:439-48.












#### **CAR T Side Effects**



#### Neurotoxicity

Delirium Aphasia Seizures Cerebral edema Intracranial hemorrhage

#### **Treatment**

Steroids Anti-epileptics

#### Hemodynamic instability

Tachycardia Hypotension Capillary leak syndrome Tocilizumab Steroids

#### **Organ dysfunction**

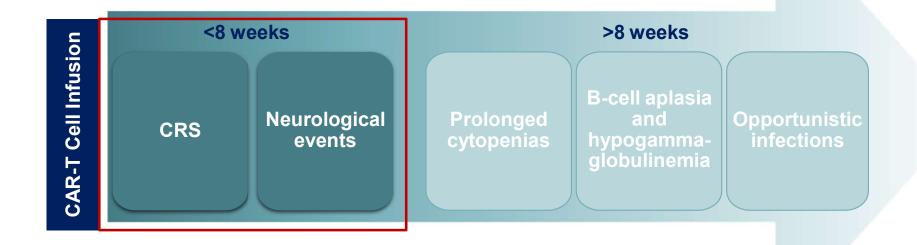
AST and ALT elevation Hyperbilirubinemia Respiratory failure










June et al. Science 2018

© 2019–2020 Society for Immunotherapy of Cancer

SITC-0719



### **CAR-T Cell Therapy-Associated Safety Events**













### **CAR-T Cell Therapy Complications**

| Efficacy                                        | Safety                                          |
|-------------------------------------------------|-------------------------------------------------|
| Bridging therapy                                | Bridging therapy                                |
| Disease burden (tumor volume and LDH)           | Disease burden (tumor volume and LDH)           |
| ECOG PS >2                                      | ECOG PS >2                                      |
| High pretreatment inflammatory markers          | High pretreatment inflammatory markers          |
| ALC at apheresis                                | High total bilirubin                            |
| Medical comorbidities: Low cardiac EF, low CrCl | Medical comorbidities: Low cardiac EF, low CrCl |

Note: The information/recommendations presented here come from personal/institutional experience

ALC, absolute lymphocyte count; CAR, chimeric antigen receptor; CrCl, creatinine clearance; ECOG, Eastern Cooperative Oncology Group performance status; EF, ejection fraction;

LDH, lactate dehydrogenase.











#### **Eligibility considerations for CAR**

#### Disease

- Relative stability during CAR T manufacturing (~2-6 weeks)
- Bridging therapy (chemo, RT, steroids, lenalidomide, ibrutinib)
- CNS control

#### Patient

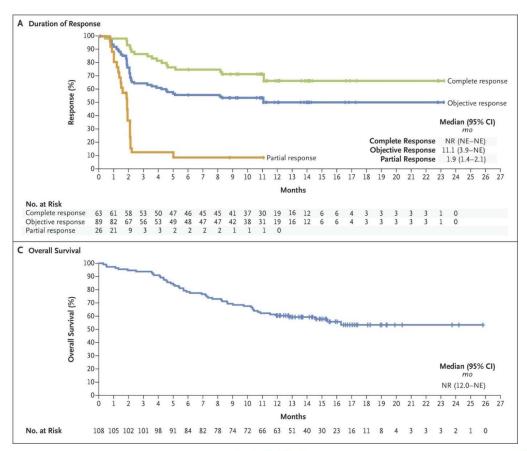
- Adequate cell counts
- DVT, bleeding, infection, neuro disorders
- Functional status: at screen vs. day of CAR T infusion

#### Other

• Social support, reimbursement











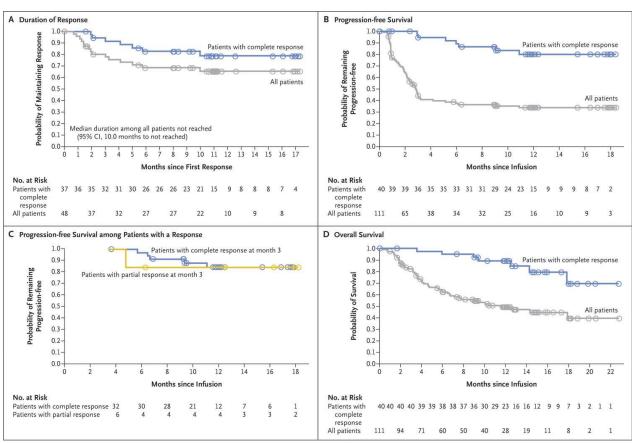

#### CD19 CAR in DLBCL- ZUMA1 (Axi-cel)

- CD19/CD283
- ORR = 82%
- CR = 54%
- 1.5-yr estimated OS = 52%
- CRS grade ≥3 = 13%
- Neurotox grade ≥3 = 28%













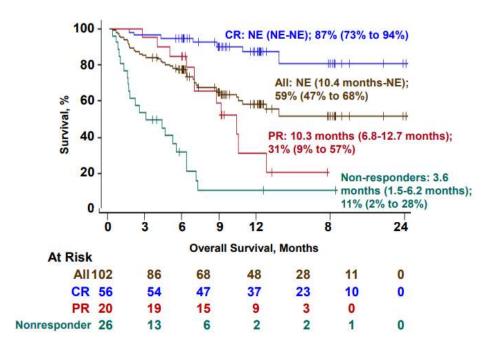

#### CD19 CAR in DLBCL - JULIET (Tisa-cel)

- CD19/4-1-BB
- ORR = 52%
- CR = 40%
- 1-yr estimated OS = 49%
- CRS grade ≥3 = 18%
- Neurotox grade ≥3 = 11%













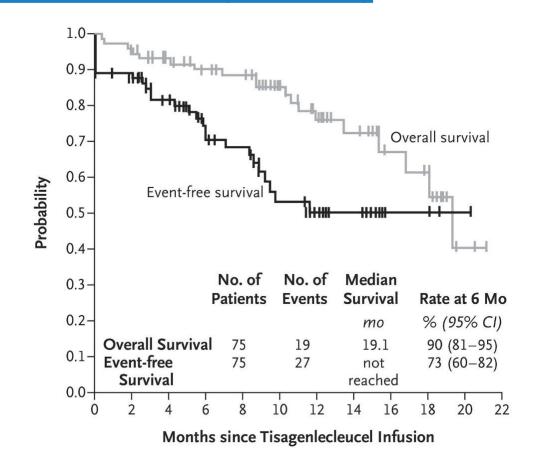

## CD19 CAR in DLBCL - TRANSCEND (Liso-Cel)

- CD19/4-1-BB, CD4:CD8 = 1:1
- ORR = 75%
- CR = 55%
- 1-yr estimated OS = 59%
- CRS grade ≥3 = 1%
- Neurotox grade ≥3 = 13%














#### CD19 CAR in B-ALL: ELIANA (Tisa-cel)

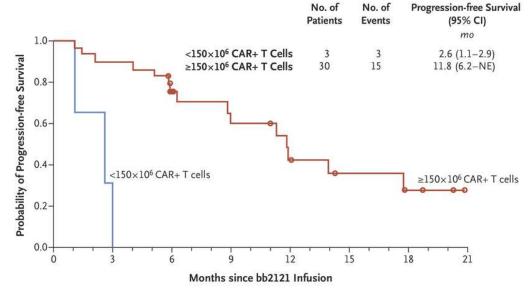
- CD19/4-1-BB
- ORR = 81%
- CR = 60%, CRi = 21%
- CRS grade ≥3 = 47%
- Neurotox grade ≥3 = 13%














## In Development: BCMA+ CAR T Therapy for Myeloma

#### bb2121

- B cell maturation antigen (BCMA)
- Phase I CRB-401 study
- Previously treated patients with relapsed/refractory multiple myeloma
- ORR: 85%, CR: 45%



No. at Risk <150×10<sup>6</sup> CAR+ T cells 3 3 2 0 ≥150×10<sup>6</sup> CAR+ T cells 30 30 28 27 26 26 17 14 14 12 12 11 8 7 6 5 5 5 3 2 2 0

Raje, NEJM 2019.









Median



### **Conclusions**

- Many immunotherapy options for hematological malignancies
- Checkpoint inhibitors for Hodgkin lymphoma and PMBCL high response rate, excellent tolerance, durable responses if CR
- Blinatumomab and inotuzumab for ALL effective salvage, deeper remissions
- Polatuzumab vedotin for DLBCL effective salvage, potential to become frontline
- CAR T therapy ever-increasing indications; patient selection and toxicity management still concerns











#### **Additional Resources**



Boyiadzis et al. Journal for ImmunoTherapy of Cancer (2016) 4:90 DOI 10.1186/s40425-016-0188-z

Journal for ImmunoTherapy of Cancer

#### POSITION ARTICLE AND GUIDELINES

**Open Access** 



The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia

Michael Boyiadzis<sup>11</sup>, Michael R. Bishop<sup>21</sup>, Rafat Abonour<sup>3</sup>, Kenneth C. Anderson<sup>4</sup>, Stephen M. Ansell<sup>5</sup>, David Avigan<sup>6</sup>, Lisa Barbarotta<sup>7</sup>, Austin John Barrett<sup>8</sup>, Koen Van Besien<sup>9</sup>, P. Leif Bergsagel<sup>10</sup>, Ivan Borrello<sup>11</sup>, Joshua Brody<sup>12</sup>, Jill Brufsky<sup>13</sup>, Mitchell Cairo<sup>14</sup>, Ajai Chari<sup>12</sup>, Adam Cohen<sup>15</sup>, Jorge Cortes<sup>16</sup>, Stephen J. Forman<sup>17</sup>, Jonathan W. Friedberg<sup>18</sup>, Ephraim J. Fuchs<sup>19</sup>, Steven D. Gore<sup>20</sup>, Sundar Jagannath<sup>12</sup>, Brad S. Kahl<sup>21</sup>, Justin Kline<sup>22</sup>, James N. Kochenderfer<sup>23</sup>, Larry W. Kwak<sup>24</sup>, Ronald Levy<sup>25</sup>, Marcos de Lima<sup>26</sup>, Mark R. Litzow<sup>27</sup>, Anuj Mahindra<sup>28</sup>, Jeffrey Miller<sup>29</sup>, Nikhil C. Munshi<sup>30</sup>, Robert Z. Orlowski<sup>31</sup>, John M. Pagel<sup>32</sup>, David L. Porter<sup>33</sup>, Stephen J. Russell<sup>5</sup>, Karl Schwartz<sup>34</sup>, Margaret A. Shipp<sup>35</sup>, David Siegel<sup>36</sup>, Richard M. Stone<sup>4</sup>, Martin S. Tallman<sup>37</sup>, John M. Timmerman<sup>38</sup>, Frits Van Rhee<sup>39</sup>, Edmund K. Waller<sup>40</sup>, Ann Welsh<sup>41</sup>, Michael Werner<sup>42</sup>, Peter H. Wiernik<sup>43</sup> and Madhav V. Dhodaokar<sup>44</sup>.

#### Open access

Position article and guidelines



The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of multiple myeloma

Nina Shah, <sup>1</sup> Jack Aiello, <sup>2</sup> David E Avigan, <sup>3</sup> Jesus G Berdeja, <sup>4</sup> Ivan M Borrello, <sup>5</sup> Ajai Chari, <sup>6</sup> Adam D Cohen, <sup>7</sup> Karthik Ganapathi, <sup>8</sup> Lissa Gray, <sup>9</sup> Damian Green, <sup>10</sup> Amrita Krishnan, <sup>11</sup> Yi Lin, <sup>12,13</sup> Elisabet Manasanch, <sup>14</sup> Nikhil C Munshi, <sup>15</sup> Ajay K Nooka, <sup>16</sup> Aaron P Rapoport, <sup>17</sup> Eric L Smith, <sup>18</sup> Ravi Vij, <sup>19</sup> Madhav Dhodapkar<sup>20</sup>











- 63F Follicular Grade-3A stage IIIA, extensive lymphadenopathy, + marrow monoclonal B cells April 2017 treated with R-CHOP x 6 and maintenance R over 2 years EOT CT improved (PR), PET not done
- Progression November 2019 12x12cm L mass hemi-thorax, path dual-HIT (FISH BCL-2, cMYC) DLBCL, ki>90%- Salvage GDPx2 PET remains 13DU
- Question #1 Treatment options
- (i) proceed with autograft
- (ii) escalate to ICE and proceed to autograft
- (ii) consider CD19 directed CART therapy
- (iii) clinical trial
- (iv) Polatuzumab/Benda/Rituximab











- 63F Follicular Grade-3A stage IIIA, extensive lymphadenopathy, + marrow monoclonal B cells April 2017 treated with R-CHOP x 6 and maintenance R over 2 years at EOT CT improved, PET not done
- Relapsed November 2019 12x12cm L mass hemi-thorax, path dual-HIT (FISH BCL-2, cMYC) DLBCL, ki>90%- Salvage GDP x 2 PET remains 13DU
- Question #1 Treatment options
- (i) proceed with autograft probably not if refractory
- (ii) escalate to ICE and proceed to autograft may be an option, especially if too unstable
- (ii) consider CD19 directed CART therapy if disease can be stabilized to collect
- (iii) clinical trial always an option
- (iv) Polatuzumab/Benda/Rituximab effects of benda (T cell fitness) if CART a later option











- 63F Follicular Grade-3A stage IIIA, extensive lymphadenopathy, marrow monoclonal B cells April 2017 treated with R-CHOP x6 and maintenance R over 2 years EOT CT improved (PR), PET not done
- Progression November 2019 12x12cm L mass hemi-thorax, path dual-HIT (FISH BCL-2, cMYC) tDLBCL, ki>90%- Salvage GDPx2 PET remains 13dv-
- Question #2 Proceed with CD19 CART (bridging with IF radiation) Risk of CRS/ICANs
- (i) tumor bulk
- (ii) serum LDH
- (iii) ECOG (lymphoma driven)
- (iv) inflammatory status
- (v) cell dose administered











- 63F Follicular Grade-3A stage IIIA, extensive lymphadenopathy, marrow monoclonal B cells April 2017 treated with R-CHOP x6 and maintenance R over 2 years EOT CT improved (PR), PET not done
- Progression November 2019 12x12cm L mass hemi-thorax, path dual-HIT (FISH BCL-2, cMYC) tDLBCL, ki>90%- Salvage GDPx2 PET remains 13dv-
- Question #2 Proceed with CD19 CART (bridging with IF radiation) Risk of CRS/ICANs
- (i) tumor bulk risk of organ compromise, may have greater CRS grade 3 / 4
- (ii) serum LDH –only independent multivariable analysis to predict severe CRS
- (iii) ECOG (lymphoma driven) eligible to 0,1
- (iv) inflammatory status CRP/ferritin –prefer to infuse at a lower level
- (v) cell dose administered Kymriah higher dose may correlate with CRS











## CASE #1 Clinical course post CART 41BB product infusion

- Day +1 Temp 39.7, BP 95/70, O2 sats 90% R/A- admit-2L NS
  - BP soft ICU –single pressor NE and increased O2 CRP 250/ Ferritin 8000 CRS grade 2 (vs 3) Toci #1
  - 6h later increasing neurological symptoms and O2 Airvo -2<sup>nd</sup> Toci given and single dose of dex 10mg iv
  - Next day decision to dex 10mg iv q 6h x 72h (02 needs)
  - Grade 3 CRS, liver, Fibrinogen concentrates ICU 4 days- resolved and steroids stopped, ICE ICANS resolved
- Day 10 discharged back to outpatient CRP <1, ferritin 600, LDH trending down 390 off O2 support
- Status day +30 PET markedly improved (80% reduction metabolic burden) but not CR, remains neutropenic (<0.5), IgG <4g, plts 20</li>
- Septra, Fluconazole, Acyclovir, Levaquin, irradiated bld products, IVIgG sc home, grastofil
- back to referring center?
- Next PET- was treatment successful or not?











## CASE #1 Clinical course post CART 41BB product infusion

- Day +1 Temp 39.7 (CRS temp often higher than neutropenic fever), BP 95/70, O2 sats 90% R/A- admit-2L NS
  - BP soft ICU –single pressor NE (ICU readiness important) and increased O2 CRP 250/ Ferritin 8000 CRS grade 2 (vs 3) Toci #1
  - 6h later increasing neurological symptoms and O2 Airvo -2<sup>nd</sup> Toci given and single dose of dex 10mg
  - Next day decision to dex 10mg iv q 6h x 72h (02 needs) (concern with lympholytic effect of corticosteroids)
  - Grade 3 CRS, liver, Fibrinogen concentrates ICU 4 days- resolved and steroids stopped, ICE ICANS resolved
- Day 10 discharged back to outpatient CRP <1, ferritin 600, LDH trending down 390 off O2 support
- Status day +30 PET markedly improved (80% reduction metabolic burden) but not CR, remains neutropenic (<0.5), IgG <4g, plts 20
- Septra, Fluconazole, Acyclovir, Levaguin, irradiated bld products, IVIgG sc home, grastofil
- back to referring center?
- Next PET- was treatment successful or not? (Need d + 90 PET if still positive improving and no new sites of disease/asymptomatic – monitor vs next line of treatment)











- 27M presents with advanced stage cHL, bulky mediastinum >10cm, also neck, axillary and abdominal adenopathy, Hasenclever 5/7. marked SOBOE prednisone and ABVD x 2 No PET, PET-2 was positive escBEACOPP x 4- EOT PET negative/complete metabolic response, ?radiation to bulk -declined
- Decision to aggressive surveillance PET at 6months Positive 3 sites DU>5U asymptomatic re biopsy? GDPx 2 CR by CT –autograft: Melphalan/Etoposide
- Question #1 Treatment options post SCT
- (i) re image PET at 1month
- (ii) maintenance Brentuximab as per "Althera" trial
- (iii) Checkpoint inhibitor if any positive disease
- · (iv) IFR to sites of positive disease











- 27M presents with advanced stage cHL, bulky mediastinum >10cm, also neck, axillary and abdominal adenopathy, Hasenclever 5/7. marked SOBOE prednisone and ABVD x 2 No PET, PET-2 was positive escBEACOPP x 4- EOT PET negative/complete metabolic response, ?radiation to bulk -declined
- Decision to aggressive surveillance PET at 6months Positive 3 sites DU>5U asymptomatic re biopsy? GDPx 2 CR by CT –autograft: Melphalan/Etoposide
- Question #1 Treatment options post SCT
- (i) re image PET at 1month -yes
- (ii) maintenance Brentuximab as per "Althera" trial yes eligible relapsed <12m or "refractory"</li>
- (iii) Checkpoint inhibitor if any positive disease possible
- (iv) IFR to sites of positive disease may depend on pattern of residual disease











#### <u>Case #2</u>

- 27M presents with advanced stage cHL, bulky mediastinum 10cm, neck, axillary and abdominal adenopathy, Hasenclever 5/7. SOBOE and starts prednisone and ABVD x 2, PET-2 positive escBEACOPP x 4 EOT PET negative, ?radiation to original bulk -declined
- Decision to PET at 6months Positive 3 sites DU>5u re biopsy? GDPx2 –autograft Melphalan/Etoposide
- Maintenance Brentuximab x 16 cycles q21d
- Question #2 If subsequent relapse and progression
- (i) checkpoint Nivolumab
- (ii) stem cell transplant haplo-identical donor







