

What's Next for Cancer Immunotherapy: Intratumoral Therapy, Cancer Vaccines, and Agonistic Antibodies to Costimulatory Molecules

Craig L. Slingluff, Jr., M.D. Professor of Surgery University of Virginia Cancer Center

27 April 2021

Disclosures

Consulting Fees: CureVac, Polynoma

IP Rights: University of Virginia Licensing and Ventures Group

Contracted Research: Merck, Celldex, GlaxoSmithKline, Theraclion

Other: American Type Culture Collection (Licensing for cell lines)

New directions in immune therapies

- 1. <u>Intratumoral therapies</u> for modulation of the tumor microenvironment to support immune rejection.
- 2. <u>Enhanced activation of T cell responses</u> to cancer, with cancer vaccines, including in situ vaccination.
- 3. <u>Agonistic antibodies to costimulatory molecules</u>, to enhance effects of cancer vaccines and to reduce regulatory T cells.

Intratumoral therapies

- Injection of an immune activating bacterium (BCG) has long been used for intravesical treatment of superficial bladder cancer.
- Intratumoral oncolytic viruses have activity in a range of cancers
 - T-vec induces clinical responses and is approved for advanced melanoma.
 - Overall response rates are still low.
- Intratumoral immune stimulation:
 - o can enhance immune rejection of the treated tumors, and
 - o may turn a cancer into a cancer vaccine (in situ vaccination),
 - which may induce regression of untreated tumors (abscopal effect).

Preclinical experience with intratumoral CTLA-4 blockade

• Intratumoral CTLA-4 Ab + costimulatory Ab to Ox-40 + immune activator TLR9 agonist (Marabelle 2013):

Marabelle A, JCI 2013 (Ron Levy)

Human experience with intratumoral IL-2 and CTLA-4 blockade

- In prior work, intratumoral IL-2 \rightarrow regression of injected lesions in most patients but has no abscopal effect.
- Clinical trial in 12 patients with advanced melanoma were evaluated after intratumoral IL-2 + CTLA-4 Ab:
 - No DLTs. One grade 3 injection site rxn.
 - Injected lesion:
 - 7 CR, 1 PR = 8/12 (67%) RR
 - Abscopal effects (9 with >1 lesion):
 - Regression at distant sites in 8/9 pts (89%)
 - Overall tumor regression (irRC): 3PR (25%) plus 1 with PD found to have path CR at surgery.
 - Included all 3 at highest dose of ipilimumab
 - Data suggest a vaccine effect.

CT scan of abdomen and pelvis of non-injected lesion for patient 11

Poly-ICLC (Hiltonol[®]) – Immune and therapeutic effects alone and in combination

Poly-ICLC alone TLR 3 agonist

- Promotes DC maturation
- Potent induction of Type I IFNs
- Induces TNF, IP-10; low IL-10
- CD8⁺ differentiation dependent upon IL-12
- Expands CD8 T cells reactive to melanoma antigens
- Repeated intratumoral injection in humans can enhance immune infiltrates and cause tumor regression.
 - -- Bogunovic et al., Cancer Res. 2011
 - -- Gallois et al., Frontiers in Immunology 2014
 - -- Salazar et al. Cancer Immunology Research 2014

Poly-ICLC 50 mcg sc d7, 12, 17; aPDL-1 200 mcg ip d 8, 10 13,15, 18, 20

-- Nagato, Lee, Harabuchi & Celis, CCR 1/14

Phase 1/2 study of in situ vaccination with tremelimumab + intravenous durvalumab + poly-ICLC in patients with select relapsed, advanced cancers with measurable, biopsy-accessible tumors

This study is sponsored by Ludwig Institute for Cancer Research, with support from the Cancer Research Institute and MedImmune/Astrazeneca

LUDWIG

CANCER

RESEARCH

The Anna-Maria Kellen

Accelerator

Study chairs: N Bhardwaj, C Slingluff

Status of enrollment April 2021

No unexpected higher-grade toxicities

Participating centers:

DUR IV = durvalumab intravenous, 1500 mg every 4 weeks x 12 cycles (dose de-escalation = 750 mg); TRE IV = tremelimumab intravenous, 75 mg every 4 weeks x 4 cycles (dose de-escalation = 22.5 mg); TRE intra-T = tremelimumab intratumoral, 10 mg (dose de-escalation = 3 mg); Poly-ICLC intra-T = intratumoral, 1 mg; Poly-ICLC IM = intramuscular, 1 mg

CORRELATIVE/TRANSLATIONAL STUDIES

UVA

- Changes in TME with multispectral immunofluorescence histology (Ileana Mauldin, Sam Young):
 - Myeloid panel: CD11b, CD1a, CD68, CD83, CD40, Gal9
 - Immune suppression: IDO, Arginase, CD39, CD73
 - T helper: CD4, CD8, Tbet, GATA3, RORgt, FoxP3
 - Checkpoint blockade #1: CD8, CD56, SOX10, PDL1, IFNg
 - Checkpoint blockade #2: CD8, LAG3, TIM3, GAL9, CD155, MHCII
 - T cell activation panel: CD8, CD4, CD45RO, Ki67, Granzyme B, ICOS
 - TLS panel: CD20, CD8, PNAd, CD83, Ki67, FoxP3
- Induction of T cell responses to shared and mutated tumor antigens
- Flow cytometry of circulating T cells for activation

MOUNT SINAI

- Nanostring for changes immune gene expression in tumors
- Nanostring for changes in PBMC
- TCR/BCR profiling in tumors

LUD2014-011 Patient #1

Locally/regionally advanced ER/PR negative, Her2 negative Breast cancer (TNBC)

- Extensive skin metastases
- Large right SCL metastasis ٠
- Paratracheal metastases ٠
- Left axillary metastasis ٠

Intratumoral polyICLC Systemic Durvalumab

Complete response at week 12

Breast cancer patients enrolled in expansion cohort, with other clinical activity. Manuscript in preparation.

Focused ultrasound (FUS) offers opportunities to modulate tumor microenvironments and to deliver therapeutic agents

Image courtesy of FUS Instruments

FUS is non-invasive (extracorporeal), non-ionizing, safe, repeatable, and localized.

Impact of and focused ultrasound (FUS) ablation on tumor tissues

- FUSA heats tumor rapidly to 45-90°C to induce controlled apoptotic cell death. •
- FUS thermal ablation \rightarrow enhanced ٠ expression of Type I IFNs in tumor.
- FUS thermal ablation + CpG (AI-T) \rightarrow • upregulation of Type I IFNs and tumor antigen release compared to CpG alone (I-T)

CpG ODM

Chaves M, ... Ferrara KW, Theranostics, 2018

Abscopal effect in pancreatic cancer patient using HIFU for palliation

- HIFU ablation of pancreatic cancer primary (a) for pain, in a patient with metastases in distant lymph nodes (b: white arrows).
- F/u CT at 1 yr: large avascular area at treated primary tumor (c) & complete disappearance of the pathologic nodes (d: white arrow).
- 4 other patients with similar outcomes.

Ungaro, Orsi, et al, Ecancermedicalscience 2016

https://www.fusfoundation.org/component/content/article?id=1932:physicians-share-latest-research-with-full-house-at-awareness-event

PI: Lynn Dengel, MD

PILOT EVALUATION OF FOCUSED ULTRASOUND ABLATION (FUSA) WITH OR WITHOUT PD-1 ANTIBODY BLOCKADE IN ADVANCED SOLID TUMORS

Eligible patients:

- <u>Cohort 1</u>: Advanced cancers treated with PD-1/PD-L1 blockade with SD after 12 weeks
- <u>Cohort 2:</u> Advanced cancers ineligible for PD-1/PD-L1 blockade.

Objectives:

- To assess the safety and toxicity of FUSA administered alone or combined with PD-1 antibody blockade.
- To evaluate the impact of FUSA treatment on immunologic features of the tumor microenvironment, including increases in CD8⁺ T cell infiltration.
 - Biopsies pre-FUS, d1, d35

An NCI-Designated Cancer Center

Focused Ultrasound (FUS) + myeloid cell depletion controls breast cancer growth

Preclinical data lead to a new clinical trial integrating gemcitabine and FUS

<u>Breast54 trial</u> (NCT04796220)

FUS + gemcitabine for advanced breast cancer.

Opening Spring 2021

Sheybani ND, et al. J Immunother Cancer. 2020

Cancer Vaccines, Checkpoints, and Costimulation: New ways to enhance immune responses to cancer

The promise of "helper" peptide vaccines

 Activation of CD4 T cells may promote antitumor immunity by increasing antigen presentation, T cell homing and activation, effector function, enhancing T cell memory, and supporting CD8 responses, ¹.

• A helper peptide vaccine for Her2 in breast cancer has induced complete regressions of DCIS in 19–29%; decreased Her2 expression ^{2,3}.

¹ Melssen M. Curr Opin Immunol (2017); ² Lowenfeld L. Clin Cancer Res (2016); ³ Staff C. Int J Oncol, (2014)

Targeting CD4 T cells with peptides restricted by HLA-DR alleles

6 Class II-MHC Restricted Melanoma Peptides (6MHP)

Protein (residues)) Allele	Peptide Sequence
Tyrosinase 56-70	DR4	(A)QNILLSNAPLGPQFP (Topalian)
Tyrosinase 388-40	06 DR15	FLLHHAFVDSIFEQWLQRHRP (Kobayashi)
MelanA ₅₁₋₇₃	DR4	RNGYRALMDKSLHVGTQCALTRR (Zarour
MAGE-3 281-295	DR11	TSYVKVLHHMVKISG (<u>Manici</u>)
MAGE-1-3, 6 ₁₂₁₋	134 DR13	LLKYRAREPVTKAE (Chaux)
gp100 ₄₄₋₅₉	DR1, DR4	WNRQLYPEWTEAQRLD (<u>Halder</u> /Li)

Clinical activity of vaccine alone for advanced melanoma: 2PR, 2SD of 17 patients, durable 1-7 years

Epitope spreading to CD8 T cells, recognizing gp100, NYESO1, and MAGE-A3 peptides , in 5/11 patients tested

Reed, CCR 2015; Hu, Ann Surg 2015; Dillon, JITC 2014; Slingluff, CCR 2013; Slingluff, JCO 2008

Rationale: CDX-1127 (varlilumab): Anti-CD27

- CD27 enhances activation and survival of T cells.
- CD27 stimulation lowers T cell expression of inhibitory molecules.
- CDX-1127
 - fully human agonistic CD27 antibody with proven safety.
 - depletes circulating regulatory T-cells.
 - has clinical activity.

Durable clinical response, RCC: 78% regression > 2.3 years Eight others w SD > 3 mos. Burris (Bullock) JCI 2017

MEL65 (NCT03617328) EVALUATION OF SAFETY AND DURABLE IMMUNOGENICITY OF MELANOMA VACCINATION, WITH OR WITHOUT SYSTEMIC CDX-1127, IN PATIENTS WITH STAGE II-IV MELANOMA (University of Virginia & Virginia Commonwealth University)

Open-label, multi-center randomized phase I/II study

 to assess combination of CDX-1127 plus helper peptide vaccine: safety, persistence of T cell response, reduction of T-regs

• Target accrual = 30 eligible patients.

Note: A prior lot of Hiltonol (Lot PJ215-1-10-01) was used in other studies (Mel60) and the amount of dry weight polyICLC was 2.0 mg/ml for that formulation. Current lots are packaged at 1.8 mg/mL dry weight polyICLC. Thus, 0.5 mL of polyICLC for Mel65 will be equivalent to 0.9 mg of polyICLC.

Preclinical data for tumor control with CD40 Ab + polyIC + antigen. αCD40-based therapeutic vaccine regimens using xenoantigen (OVA) or mutant (MUT30) neoantigen control melanoma outgrowth. In both experiments, mice were implanted with 4 x 10^5 B16cOVA cells. 10d after implantation when tumors were palpable, mice were injected intraperitoneally with a mix of 100µg α CD40, 75µg polyIC with or without 200 µg of the indicated protein (A) or peptide (B). Tumor growth was measured by caliper.

--Tim Bullock, UVA

Agonistic CD40 antibody: CDX-1140

CDX-1140 has Dose-dependent and Fc-independent Agonist Activity.

<u>B Cells</u>: CFSE labeled B cells were incubated 6 days with whole Ab or F(ab')2. The % of proliferating cells was measured by flow cytometry.

<u>DCs:</u> Monocyte-derived DCs were incubated with Ab 48hrs. Supernatant was analyzed for IL-12p40 by ELISA.⁷⁴

Peptide antigens for Mel66 trial include: shared antigens and a mutated neoantigen

Table 1: Peptides used in the Melanoma Helper Peptide Vaccine				
	Sequence	Epitope	Ref	
	AQNILLSNAPLGPQFP	Tyrosinase 56-70*	1	
	FLLHHAFVDSIFEQWLQRHRP	Tyrosinase 386-406	2	
6MHP	RNGYRALMDKSLHVGTQCALTRR	Melan-A/MART-151-73	3	
	TSYVKVLHHMVKISG	MAGE-3 281-295	4	
	LLKYRAREPVTKAE	MAGE-1,2,3,6 121-134	5	
	WNRQLYPEWTEAQRLD	gp100 44-59	6,7	
NeoAg- mBRAF		BRAF 585-614 (V600E) **	8	
* alanine added at the N terminus; ** histidine added at the N terminus.				

BRAF V600E mutation in most melanocytic nevi

373/478 (78%) of acquired melanocytic nevi express BRAF V600E [11 studies; Roh, Pigment Cell and Melanoma Research, 2015]. High-power view with IHC with VE1 antibody, showing BRAF V600E mutation in a nevus.

Yeh I, von Deimling A, Bastian BC. J Natl Cancer Inst. 2013.

ENHANCED MELANOMA VACCINE AGAINST NEOANTIGEN AND SHARED ANTIGENS BY CD40 ACTIVATION AND TLR AGONISTS IN PATIENTS WITH STAGE II-IV MELANOMA: UVA MEL 66 (NCT04364230) University of Virginia and Cleveland Clinic Funded by Department of Defense

Open-label, multi-center phase I/II study:

- To test the safety and immunogenicity of vaccination with helper peptides + CD40 Ab CDX-1140 + TLR3 agonist polyICLC.
- To test for DC activation and maturation.
- To evaluate whether vaccination against a mutant BRAF peptide induces T cells that recognize BRAF-mutant melanomas and infiltrate nevi.

¹ Enroll patients clinically free of disease. An individual with small radiologic or clinical findings of an indeterminate nature may still be eligible. See Inclusion/Exclusion criteria for details.

² Vaccine site biopsies will be done only at the replicate vaccine site.

³ Biopsy of the sentinel immunized node will only be done for the replicate vaccine site.

⁴Participants will be allocated to Cohort A or Cohort B. Each participant will receive vaccines at two sites. Six vaccines will be given at the primary vaccine site. Three vaccines will be given at the replicate vaccine site.

Summary

- Intratumoral therapy with checkpoint blockade antibodies offers promise for enhanced tumor control and reduced toxicity
 - Especially for CTLA4 blockade
 - Promising in combinations with TLR agonists and with PD1/PD-L1 blockade
- Focused ultrasound technologies can:
 - Favorably modulate the tumor microenvironment to support immune therapies
 - May benefit from combination with checkpoint blockade or chemotherapy
- Cancer vaccines can have clinical activity targeting shared tumor antigens
 - Cancer testis antigens; Differentiation antigens; Mutated neoantigens
- Co-stimulatory antibodies (to CD27 and CD40) may:
 - Enhance activation of dendritic cells
 - Reduce regulatory T cells
 - Enhance T cell activation and survival
- Ongoing clinical trials will illuminate the impact of these therapies in tumor, blood, and vaccine sites in humans.

Collaborators and Research Team

Research Fellows and Students

Kevin Lynch Katie Leick Marit Melssen Max Meneveau Min Kwak Karlyn Pollack

Research Faculty

Walter Olson

Ileana Mauldin

Protocol Development / Clinical Trials Office

Kim BullockMeagan GonyarCara HanbyAnn BrownGina SnowEmily AllredAdela MahmutovicEmily Allred

Immunologic Analyses

Kelly Smith Marya Dunlap-Brown Donna Deacon

Statisticians: Public Health Sciences

Gina Petroni Nolan Wages Mark Smolkin

All of our patients

Collaborating Laboratories at UVA

Tim Bullock: Aly Witter Rich Price: Natasha Sheybani

Clinical Melanoma Team - UVA

Elizabeth Gaughan	Lynn Dengel
Varinder Kaur	Kathleen Haden
Alejandro Gru	Art Saavedra

Collaborators in Multicenter trials

Nina Bhardwaj, Mt SinaiJohn Nemunaitis, ToledoMike Lowe, EmoryAndrew Poklepovic, VCUKeisuke Shirai, DartmouthBrian Gastman, Cleveland Clinic

Funding Support

NCI/NIH, UVA Cancer Center Department of Defense Ludwig Institute for Cancer Research Cancer Research Institute Medimmune Celldex Focused Ultrasound Foundation Theraclion Rebecca C Harris fellowship