

Disclosures

- Research funding: BMS, Akoya Biosciences (JT and AS)
- Vectra imaging system loan, reagent provision, and stock options from Akoya Biosciences (JT and AS)
- Consultant/Advisory boards: BMS, Merck, Astra Zeneca, and Compugen (JT) and Akoya Biosciences (JT and AS)

Guiding principles:

• The next generation of tissue-based biomarkers will likely include the identification and quantification of multiple cell types and their spatial interactions.

• Next generation of tissue-based biomarkers are likely to be identified using large, well-curated datasets and are likely to include not just multiplex, but multimodality approaches.

Acknowledgements

Taube Lab members

Sneha Berry, MS

Benjamin Green

Liz Engle, MS

Tricia Cottrell, MD, PhD

Haiying Xu

Aleksandra Ogurtsova

Nicholas Giraldo, MD, PhD

AI/Computer Vision

Alan Yuille, PhD

Seyoun Park, PhD

Yixiao Zhang

Astronomy/IDIES

Alexander Szalay, PhD

Heshy Roskes, PhD

Maggie Eminizer, PhD

Richard Wilton, MD

Joshua Doyle, MD

Sahil Hamal, CS

Dmitry Medvedev, CS

BKI collaborators

Drew Pardoll, MD, PhD

Robert Anders MD, PhD

Suzanne Topalian, MD

Evan Lipson, MD

Akoya collaborators

Cliff Hoyt, MS

Chi Wang

BMS collaborators

Robin Edwards, MD

Complete quantitative analysis

 Most early presentations and papers using mIF have assessed 5-10 high power fields, same with other 'high plex' technologies

• One tumor >1000 fields and >300 GB disk

space

Each square= 1 HPF*

Stars and galaxies are like cells in pathology

Astronomy viewer

Pathology viewer

- Strong parallels between mIF today and astronomy 25 years ago
- Need to scale and organize data, multicolor photometry, image segmentation, spatial statistics

Sloan Digital Sky Survey: "The Cosmic Genome Project"

- Public database and spectrograph built at JHU (SkyServer, images with spatial statistics, and catalogues)
- Started in 1992, finished in 2008: The world's most used astronomy facility today (2.8B web hits in 16 years)
- We have modified the SkyServer structure to host our tumor-immune maps

Multiplex IF panel (cell quantification, distance metrics)

CD8+ T-cells expressing PD-1^{low} vs. PD-1^{med} vs. PD-1^{high} indicate distinct populations with different biomarker potential

CD8+ T-cells expressing PD-1^{low} vs. PD-1^{med} vs. PD-1^{high} indicate distinct populations with different biomarker potential

Goal: robust assessment of marker intensity *in situ*

Multiplex IF analysis pipeline

Robust measurements of marker intensity in situ

Analysis of pre-treatment specimens from 53 patients with advanced melanoma receiving anti-PD-1

Methods: Acquired tiled images across entire TME in an unbiased fashion, and then either:

- 1) Ranked them by CD8+ cell density in decreasing order
- 2) Assessed "representative" fields, mixed between inflamed vs. non-inflamed and central vs. peripheral areas of tumor

"Representative" sampling

Analysis of pre-treatment specimens from 53 patients with advanced melanoma receiving anti-PD-1

Complete quantitative analysis

 Most early presentations and papers using mIF have assessed 5-10 high power fields, same with other 'high plex' technologies

• One tumor >1000 fields and >300 GB disk

space

Each square= 1 HPF*

AUC heat maps for response to therapy

A combination of key TME features predicts objective response and survival after anti-PD-1 therapy

Discovery Cohort

ROC curves for objective response and long-term outcomes after anti-PD1

Discovery Cohort

Validation Cohort

Pre-treatment predictors of checkpoint blockade response and resistance in advanced melanoma

Individual features

Feature ranking	Feature	Assoc. with outcome	AUCs
1	CD163+PD-L1 ^{neg}	-	0.75
2	Tumor PD-L1 ^{neg}	-	0.74
3	CD8+FoxP3+PD-1 ^{mid}	+	0.73
4	Tumor PD-L1 ^{low}	+	0.72
5	CD8+FoxP3+PD-1low	+	0.72
6	CD8+PD-L1low	+	0.71
7	CD8+FoxP3+	+	0.71
8	CD8+FoxP3+PD-L1low	+	0.70
9	CD8+FoxP3+PD-L1neg	+	0.69
10	Tumor	-	0.69

Combining the positive and negative features

Tumor-immune maps localizing CD8+FoxP3+ cells in pre-treatment melanoma specimens

CD8+FoxP3+ cells:

~2.5% of all CD8+ cells in the melanoma TME

- Tumor PD-L1-
- Tumor PD-L1+
- CD8+PD-1-
- CD8+PD-1+
- CD8+FoxP3+

Comparative performance tested for:

- 100% TME sampling < 30% TME sampling
- 4-plex (CD8, PD-L1, CD163, tumor) < 6-plex
- Assessments of PD-1 and PD-L1 pos vs. neg < PD-1 or PD-L1^{low, mid, high}
- Smaller (<20 mm²) = larger specimens

Small specimens are adequate for analysis

<20mm2 tumor area

>20mm2 tumor area

Intermediate (n=12)

Poor (n=14)

- Minimum 5 mm² tumor surface area for inclusion
- 20 mm² in surface area was chosen because it represents the size of 3 core biopsies (each 1 mm x 15 mm in size) with ~50% tumor in each core.
- Median size across both discovery and validation cohorts = 38 mm², average 68 mm²

AstroPath platform can produce petabytes of tissue imaging data

- Developed a unique facility to produce petabytes of robust tissue imaging data (Discovery + Validation for melanoma specimens includes 131,892 HPF with over 72,847,963 distinct cells)
- Expanding to numerous pre- and ontreatment tumor types
- Adding in genomics and spatial transcriptomic data for treated samples
- Spatially mapping TCGA specimens and linking to TCGA

Acknowledgements

Taube Lab members

Sneha Berry, MS

Benjamin Green

Liz Engle, MS

Tricia Cottrell, MD, PhD

Haiying Xu

Aleksandra Ogurtsova

Nicholas Giraldo, MD, PhD

AI/Computer Vision

Alan Yuille, PhD

Seyoun Park, PhD

Yixiao Zhang

Astronomy/IDIES

Alexander Szalay, PhD

Heshy Roskes, PhD

Maggie Eminizer, PhD

Richard Wilton, MD

Joshua Doyle, MD

Sahil Hamal, CS

Dmitry Medvedev, CS

BKI collaborators

Drew Pardoll, MD, PhD

Robert Anders MD, PhD

Suzanne Topalian, MD

Evan Lipson, MD

Akoya collaborators

Cliff Hoyt, MS

Chi Wang

BMS collaborators

Robin Edwards, MD