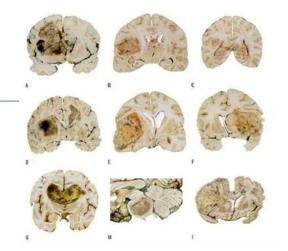
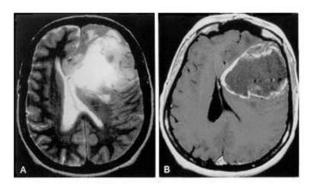
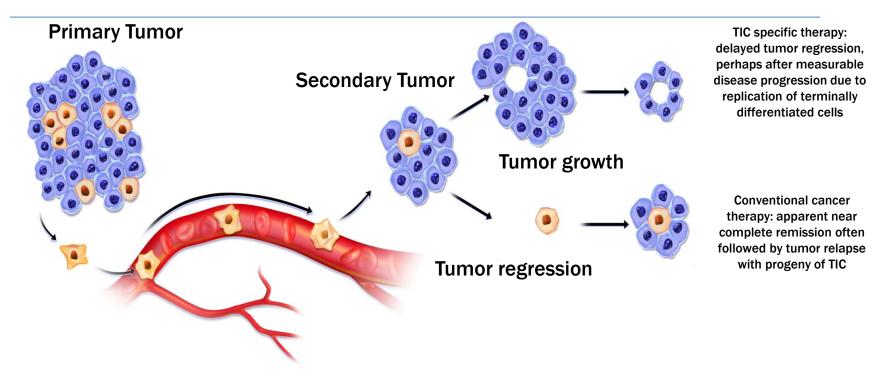
Phase II trial of therapeutic vaccine consisting of autologous dendritic cells loaded with autologous tumor cell antigens from self-renewing cancer cells in patients with newly diagnosed glioblastoma

Daniela A. Bota,¹ David E. Piccioni,² Renato V. LaRocca,³ Christopher M. Duma⁴ Santosh Kesari,^{4,5} Jose A. Carrillo,⁵ Robert D. Aiken⁶, Robert O'Donnell,⁷ Thomas H. Taylor,¹ Candace Hsieh,⁸ Gabriel I. Nistor,⁸ and Robert O. Dillman⁸

 ¹University of California Irvine, Irvine, CA; ²University of California San Diego, San Diego, CA;
 ³Norton Cancer Center, Louisville, KT; ⁴Hoag Hospital, Newport Beach, CA; ⁶John Wayne Cancer Institute, Santa Monica, CA; ⁵Rutgers University, New Brunswick, NJ; ⁷University of California Davis, Sacramento, CA; ⁸AIVITA Biomedical, Inc., Irvine, CA


I have received funding for my basic and translational work from the NIH, NCI, NINDS, AACR, CIRM, Triphase, Celgene, ERC Belgium, Novocure and grateful patients.


I am a consultant and/or a member of the speaker bureau for Novocure, ERC Belgium, Primimmune, Tocagen, and BTG International.


Glioblastoma

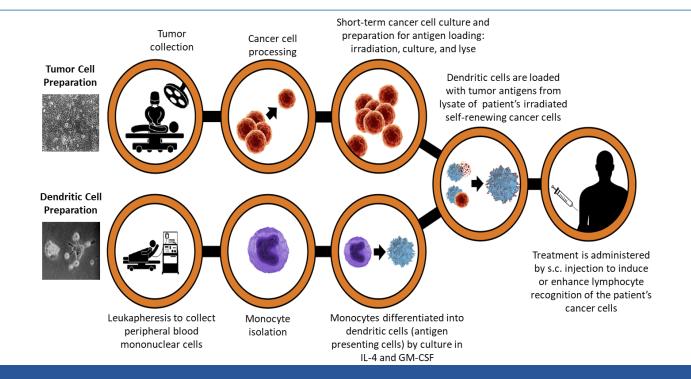
- Most common and aggressive brain cancer (WHO grade IV astrocytoma)
- Incidence of 3.2 per 100,000 population
- Standard treatments are surgery, radiation, temozolomide, bevacizumab and alternating electrical fields
- Median Survival is 18-24 months

Autologous Tumor Antigens from Tumor Initiating Cells

Differentiated Tumor Cells

Tumor Initiating Cells (TIC)

Product and Rationale: DC-ATA


• Patient-Specific Autologous Dendritic Cells (DC) loaded with Autologous Tumor Antigens (ATA)

• ATA from lysate of irradiated autologous tumor cells that were self-renewing in a short-term cell culture (GSC)

• DC from peripheral blood mononuclear cells

DC-ATA Manufacturing Process

4 weeks for TC, 1 week for DC-ATA, 3 weeks for QC/QA

DC-ATA Study Design

- □ Single arm, open label phase 2 trial (NCT03400917)
- □ N=55 evaluable patients
- Eligibility for tumor collection
 - \circ Age \leq 70 yrs
 - Imaging diagnosis of Glioblastoma
 - Amenable for tumor resection

DC-ATA Intent to Treat

- GBM pathology confirmed
- Cell culture established
- Sufficient monocytes from leukapheresis
- Karnofsky Performance Status > 70
- Tapering corticosteroids
- Plan to proceed with concurrent RT and temozolomide

DC-ATA Treatment Scheme

• DCV s.c. weekly x 3, starting after recovery from chemoradiation

• Adjuvant TMZ or other standard therapy while giving monthly DCV injections (weeks 8, 12, 16, 20, and 24)

• Treatment continued through radiologic progression

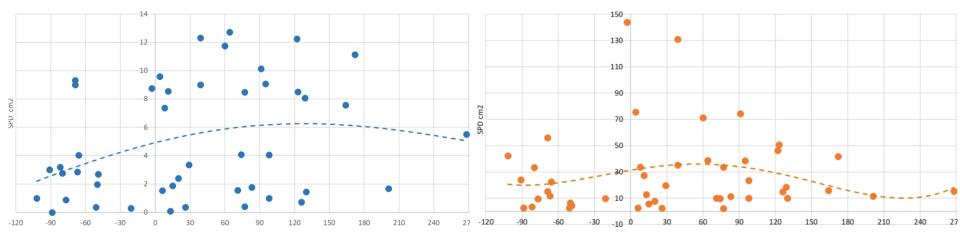
DC-ATA Outcomes

- <u>Primary:</u> Overall Survival: 50% decrease in death 15 months from enrollment
- <u>Secondary</u>: Progression-free survival 7 months from enrollment

Study Progress to Date

- Manufacturing success rates:
 - 46/48 for tumor cell lines
 - 41/42 for leukapheresis products
 - 9 had to repeat the procedure

- Therapeutic phase
 - 37 eligible enrollees
 - 31 started treatment
 - 12 completed 8 doses
 - 5 stopped before 8 doses
 - 184 doses administered

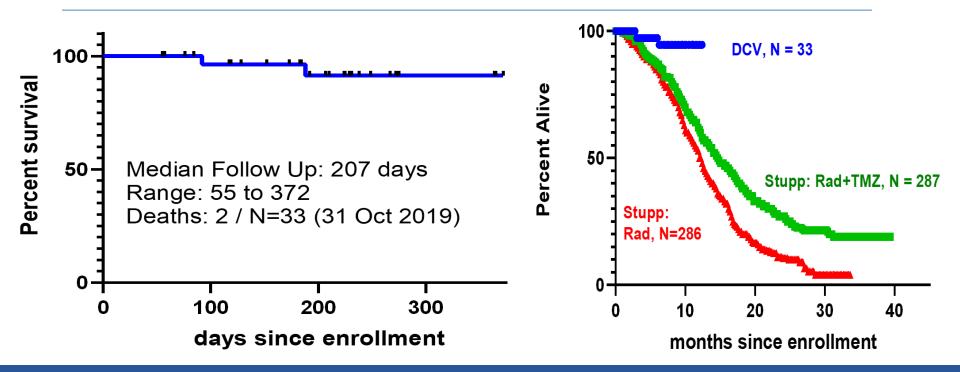

Patient Characteristics (n=33)

Median Age	58 (29 – 69)
Gender	
Male	25 (76%)
Female	8 (24%)
Race	
Hispanic	7 (21%)
White	26 (79%)

Median KPS	80 (70 – 100)
IDH1 mutations	
Yes	1 (3%)
No	27 (82%)
Unknown	5 (15%)
MGMT Methylated	
Yes	9 (27%)
No: WT	18 (55%)
Unknown	6 (18%)

Data available as of 16-OCT-2019

Radiographic Responses (cm²) versus Time (days)


T1 contrast enhancement

T2/FLAIR

Data available as of 31-OCT-2019

Overall Survival to Date (n=33)

Data available as of 31-OCT-2019

Serious Adverse Events

- 16/29 (55%) with 27 SAE
- All SAE involved hospitalization
- No SAE attributed to study treatment
- No SAE immediately following vaccination

Between	Number	
Doses	of SAE	Brief Description
1 & 2	1	chest pain, fever
2&3	5	seizure, fall, focal weakness, H/A
3 & 4	5	seizure, focal weakness, fall
4 & 5	2	fall, aphasia, general deterioration
5&6	4	seizure, visual change, focal weakness, pancreatitis
6&7	4	seizure, fall, focal weakness, aspiration pneumonia, cognitive decline, weakness left side
7 & 8*	4	seizure, fall, abdominal pain, pancreatitis, pulmonary emboli
Beyond	2	hyponatremia, pancreatitis

Immune Monitoring Methods

- 450 plasma biomarkers studied in 16 patients
 Assayed by RayBiotech, Inc (Waycross, GA)
- Specimen Collection: before vaccine dose at week 1,2, 3 and
 8
- Looking at early response week 3 vs week 1 (after 2 doses) and late changes week 8 vs week 1 (after 3 doses)

Pro-response inflammatory marker patterns are present in 60.7% of patients

Marker	Responders (N)
IL12p40	10
IL1b	10
IFNg	9
Granulysin	9
Eotaxin	10
Eotaxin-2	11
Eotaxin-3	6
lgE	13
lgG1	9
IL10	9
IL17B	9
IL17F	10
IL2	9
IL5	11
IL7	11
TNFa	9
TNFb	10

The response pattern include:

- Type II hypersensitivity consistent in majority of the patients with significant increase of IgE, Eotaxins, IL5, IL17B, IL17F
- In some patients the Th1 response is blunted by corticosteroids reflected by lower values of IFNg/TNFa/Granulysis/IL1b
- Th2 response is consistent and include the increase of at least IgG1, IgE, IL12p40, IL10

Conclusions

- The manufacturing process for DC-ATA has a low failure rate
- The DC-ATA treatment has good safety, with no treatment related SAE to date
- □ Preliminary OS data are reassuring
- Immune monitoring is in progress, and it suggests that DC-ATA can induce inflammatory changes

Lim, M et al, 2018

