

Immunotherapy for the Treatment of Hematologic Malignancies Joseph Maly, MD Norton Cancer Institute

Society for Immunotherapy of Cancer

Association of Community Cancer Centers

Disclosures

- No relevant financial relationships to disclose.
- I will not be discussing non-FDA approved indications during my presentation.

Monoclonal Antibodies Targeting B Cell Lymphomas

FDA-approved Checkpoint Inhibitors for Lymphomas

- Nivolumab (anti-PD-1)
 - CheckMate 205/039: Patients with cHL that has relapsed or progressed after autologous hematopoietic stem cell transplantation and post-transplantation brentuximab vedotin
- Pembrolizumab (anti-PD-1)
 - KEYNOTE-087: Adult and pediatric patients with refractory cHL, or patients whose disease has relapsed after three or more lines of therapy
 - KEYNOTE-170: Adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or those who have relapsed after 2 or more prior lines of therapy

Patient Selection Criteria for Checkpoint Inhibitor Therapies

- Expression of the ligand for checkpoint inhibition
 - e.g. PD-L1 expression for anti-PD-1 therapy
- Relapse or progression after previous therapies
 - Nivolumab: After prior HSCT and brentuximab therapy
 - Pembrolizumab: Relapse after three prior treatments, PMBCL
- Presence of co-morbidities
 - e.g. Presence of active autoimmune disease which could be worsened

Nivolumab in Hodgkin Lymphoma

Table 3. Clinical Activity in Nivolumab-Treated Patients.*				
Variable	All Patients (N=23)	Failure of Both Stem-Cell Transplantation and Brentuximab (N=15)	No Stem-Cell Transplantation and Failure of Brentuximab (N=3)	No Brentuximab Treatment (N=5)†
Best overall response — no. (%)				
Complete response	4 (17)	1 (7)	0	3 (60)
Partial response	16 (70)	12 (80)	3 (100)	1 (20)
Stable disease	3 (13)	2 (13)	0	1 (20)
Progressive disease	0	0	0	0
Objective response				
No. of patients	20	13	3	4
Percent of patients (95% CI)	87 (66–97)	87 (60–98)	100 (29–100)	80 (28–99)
Progression-free survival at 24 wk — % (95% CI)‡	86 (62–95)	85 (52–96)	NC∮	80 (20–97)
Overall survival — wk				
Median	NR	NR	NR	NR
Range at data cutoff¶	21-75	21–75	32–55	30–50

Ansell et al. NEJM 2015

Nivolumab in Hodgkin Lymphoma

Ansell et al. NEJM 2015

Pembrolizumab in Hodgkin Lymphoma

© 2018–2019 Society for Immunotherapy of Cancer

Pembrolizumab in Primary Mediastinal Large B cell Lymphoma

B Cell Malignancies are CD19+

Blanc et al. Clinical Cancer Research 2011

<u>Chimeric Antigen Receptor (CAR)</u> T cell Therapy

Modified T-cell infusion Engineering patient T cells to Leukapheresis target and eliminate cells presenting specific antigens V_{L} Antigen binding 4 Chemotherapy (anti-CD19) domain V_H Antibody-coated beads CD8-alpha hinge and transmembrane Bead removal 2 T-cell activation/ transduction^a T cell Modified T-cell 4-1BB costimulatory expansion^a domain CD3-zeta signaling domain * Cellular reprogramming and ex vivo expansion are conducted at a cell processing facility.

FDA-approved CAR T Cell Therapies for Lymphoma

- Axicabtagene ciloleucel
 - ZUMA-1: Adult patients with relapsed or refractory large B cell lymphoma after two or more lines of systemic therapy, including diffuse large B cell lymphoma, high-grade B cell lymphoma, and DLBCL arising from follicular lymphoma
- Tisagenlecleucel
 - JULIET: adult patients with relapsed/refractory large B cell lymphoma—including diffuse large B cell lymphoma (DLBCL), high-grade B cell lymphoma and DLBCL arising from follicular lymphoma—after 2 or more lines of systemic therapy.

Patient Selection Criteria for CAR T Therapies

- Expression of the desired antigen for CAR T therapy
 - e.g. CD19
- Disease burden
 - CAR T trials: <30% to minimize the risk of cytokine release syndrome
- Presence of co-morbidities
 - e.g. Presence of active autoimmune diseases which could be worsened

Axicabtagene ciloleucel in B Cell Lymphoma Overall Survival

Axicabtagene ciloleucel in B Cell Lymphoma Duration of Response

Tisagenlecleucel in B Cell Lymphoma Overall Survival

Schuster et al. NEJM 2017

Tisagenlecleucel in B Cell Lymphoma Duration of Response

Schuster et al. NEJM 2017

FDA-approved CAR T Cell Therapies for Acute Leukemia Tisagenlecleucel

• ELIANA: patients up to age 25 years with B-cell precursor acute lymphoblastic leukemia (ALL) that is refractory or in second or later relapse

BiTE (Blinatumumab) Therapy

- Combines anti-CD19 F(ab) with anti-CD3 F(ab)
- Lacks the Fc region
- Facilitates T cell engagement with CD19+ tumor cells (Similar to CD19 CAR T)
- FDA approval: Patients with relapsed/refractory B cell precursor ALL

Bargou et al. Science 2008

Blinatumomab for B-ALL

Immunotherapies for Multiple Myeloma

- No approved checkpoint inhibitors
 - KEYNOTE-183/185/023: Halted or discontinued due to risk/benefit profile
- Vaccine-based approaches
 - Non-antigen Specific
 - Attenuated measles
 - Whole cell FM-CSF
 - Dendritic tumor fusions
 - Antigen Specific
 - Idiotype: RNA < DNA, protein
 - Pulsed dendritic cells
 - Tumor-specific peptides

In Development: BCMA+ CAR T Therapy for Myeloma

- bb2121
 - B cell maturation antigen (BCMA)
 - Phase I CRB-401 study
 - Previously treated patients with relapsed/refractory multiple myeloma

<u>Cytokine</u> <u>Release</u> <u>Syndrome</u> (CRS)

Association of Community Cancer Center

CRS management

 Tocilizumab GRADING ASSESSMENT TREATMENT Monoclonal antibody Grade 1 CRS Vigilant supportive care that blocks IL-6 signaling Fever, constitutional Assess for infection (Treat fever and neutropenia if present, symptoms monitor fluid balance, antipyretics. analgesics as needed) Grade 2 CRS 3000-Extensive Hypotension: responds to fluids 2500co-morbidities or one low dose pressor 2000or older age? No Hypoxia: responds to <40% O₂ Vigilant supportive care 1500-Organ toxicity: grade 2 (Monitor cardiac and other organ 1000pg/mL function closely) 500 500 /es Grade 3 CRS Hypotension: requires multiple 400pressors or high dose pressors Vigilant supportive care 300-Hypoxia: requires ≥ 40% O2 Tocilizumab 200-Organ toxicity: grade 3, grade 4 ± corticosteroids 100transaminitis 10 12 14 2 4 8 0 Grade 4 CRS Mechanical ventilation Tocilizumab Organ toxicity: grade 4,

Day after T Cell Infusion

-300

-250

-200 꺾

150 mg/

(<3 mg/L

100

-100

-80 -60

-40

-20

30

- IL-6

- IFN-y

- Other

20

- CRP

Lee et al. Blood 2014

excluding transaminitis

Further Resources

Boyiadzis et al. Journal for ImmunoTherapy of Cancer (2016) 4:90 DOI 10.1186/s40425-016-0188-z

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

CrossMark

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia

Michael Boyiadzis^{1†}, Michael R. Bishop^{2†}, Rafat Abonour³, Kenneth C. Anderson⁴, Stephen M. Ansell⁵, David Avigan⁶, Lisa Barbarotta⁷, Austin John Barrett⁸, Koen Van Besien⁹, P. Leif Bergsagel¹⁰, Ivan Borrello¹¹, Joshua Brody¹², Jill Brufsky¹³, Mitchell Cairo¹⁴, Ajai Chari¹², Adam Cohen¹⁵, Jorge Cortes¹⁶, Stephen J. Forman¹⁷, Jonathan W. Friedberg¹⁸, Ephraim J. Fuchs¹⁹, Steven D. Gore²⁰, Sundar Jagannath¹², Brad S. Kahl²¹, Justin Kline²², James N. Kochenderfer²³, Larry W. Kwak²⁴, Ronald Levy²⁵, Marcos de Lima²⁶, Mark R. Litzow²⁷, Anuj Mahindra²⁸, Jeffrey Miller²⁹, Nikhil C. Munshi³⁰, Robert Z. Orlowski³¹, John M. Pagel³², David L. Porter³³, Stephen J. Russell⁵, Karl Schwartz³⁴, Margaret A. Shipp³⁵, David Siegel³⁶, Richard M. Stone⁴, Martin S. Tallman³⁷, John M. Timmerman³⁸, Frits Van Rhee³⁹, Edmund K. Waller⁴⁰, Ann Welsh⁴¹, Michael Werner⁴², Peter H. Wiernik⁴³

Case Study 1

 32 y/o female with minimal pmh presenting with enlarging LN in the base of the Rneck. Non-tender, painless. Steady growth rate over ~3 months. Not responsive to anti-microbials.

• Lab testing:

CBC: normal CMP: normal ESR: elevated at 25 mm/h

- Physical Exam:
 - LN 4.5 cm in size LN in the L-base of the neck and mild inspiratory wheezing
 - O/w physical exam is without any specific Findings

Case Study 1

Biopsy: Left cervical lymph node

- 2% large mono- or bi-nucleated blastoid giant cells and a plethora of reactive cells divided by sclerotic bands
- IHC: strong positivity of CD30 in tumor cells, positive staining of CD15 and a negative staining for CD20
- Diagnosis: diagnosis of classical Hodgkin, nodular sclerosing type

PET-CT Scan

Large mediastinal tumor >1/3 of the thorax. Left-cervical and left-supraclavicular lymph nodes (up to 3.5 cm) and isolated lesions within the spleen. No uptake within the bone marrow.

Case Study 1

Treatment Course

• ABVD at standard dosing x 6 cycles wit PET-CR after after 2 cycles

Relapse

- 7 months after completion of therapy → shortness of breath and night sweats
- Repeat PET-CT positive for mediastinal and splenic uptake.
- Biopsy of mediastinum with confirmed relapsed disease

Salvage:

- ICE chemotherapy at standard dosing x 2 cycles (stem cell mobilization and collection after c1)
 → achieved PR with positive PET-by deuvile scoring
- Pembrlizumab x2 cycles with PET-CR and then went on to ASCT with BEAM conditioning regimen. Followed by radiation to the chest.

Case study 2

- 22 y/o female presented to the ED with abdominal pain, thought to be related to possible UTI. Imaging and UA consistent with pyelonephritis but also found to have a tWBC of 243 10*3/uL, 94% of which were atypical lymphocytes.
- CT Imaging with splenomegaly (17 cm). Bone marrow biopsy revealing preB-AL
 - 95% marrow cellularity
 - CD20 negative. CD19 positive.
 - NGS: MLL-AF1 fusion, other abnormalities
- LP: diagnostic CSF positive by flow and morphology (CNS3 status)

Case study 2

- Induction course:
 - Elected AYA treatment course as guided by CALGB 10403 Trial which includes: cytarabine, methotrexate, daunorubicin, vincristine, and peg-asparaginas
 - End of Induction Bone marrow biopsy: MRD positive 2.6% by flow cytometry
- Consolidation course:
 - HLA Typing with match search (siblings and registry)
 - Consolidation course agents: cyclophosphamide, cytarabine, mercaptopurine, IT-mtx, vincristine, peg-asparaginase
 - End of consolidation bone marrow biopsy: MRD 1.6% by flow cytometry

Case study 2: Question

- What treatment would recommend next?
 - Continue consolidation course
 - Move on to allogeneic stem cell transplant (assuming donor identified)
 - Blinotumumab
 - Liposomal vincristine
 - Nelarabine

Case study 2: Answer

- What treatment would recommend next?
 - Continue consolidation course
 - Move on to allogeneic stem cell transplant (assuming donor identified)
 - Blinatumomab
 - Liposomal vincristine
 - Nelarabine

Case study 2

- Salvage course:
 - One more course of consolidative chemotherapy with achievement of MRD followed by blinatumomab
 - Developed allergic reaction: fevers and neurologic toxicities with tremors

Case study 2: Question

- What do you do with this toxicity
 - Continue with agent and dose dexamethasone
 - Temporarily hold agent until resolution and then resume
 - Permanently discontinue agent

Case study 2: Answer

- What do you do with this toxicity
 - Continue with agent and dose dexamethasone
 - Temporarily hold agent until resolution and then resume
 - Permanently discontinue agent

Case study 2

 She was able to achieve MRD- status and is currently in midst of an allogeneic stem cell transplant

