Exploring and Exploiting the Immune Landscape in Brain Cancers

Prof. Johanna Joyce

Department of Oncology and Ludwig Institute for Cancer Research Agora Cancer Centre, University of Lausanne, Switzerland

www.joycelab.org 🏼 🎔

@Johanna_A_Joyce, @Joycelab

Disclosure Information (2015-2020)

I have the following disclosures to list: Grant support: Roche (2016-18) Speaker Honorarium- Novartis (2016) Speaker Honorarium- Glenmark Pharmaceuticals (2019) Consulting Honorarium- Ono Pharmaceuticals (2015)

Diverse Cell Types in the Tumor Microenvironment Regulate Cancer Progression

Adapted from: Quail & Joyce, Nature Medicine (2013) Quail & Joyce, Nature Reviews Cancer (2017)

TAM: Tumor-associated macrophage CAF: Cancer-associated fibroblast

Rationale for Therapeutically Targeting the Tumor Microenvironment

• Normal cells in the tumor microenvironment can be 'educated' or converted by cancer cells to promote malignant progression.

• Microenvironment cells represent a comparatively simple target relative to genetically unstable cancer cells, and should not acquire mutations that drive therapeutic resistance.

Exploring and Exploiting the Brain Tumor Microenvironment (TME)

Adapted from: Quail & Joyce, Cancer Cell (2017) Aldalpe et al, Nature Reviews Clinical Oncology (2019)

Exploring and Exploiting the Brain Tumor Microenvironment (TME)

- How does the brain TME evolve with disease progression?

- Is the TME of different brain malignancies sculpted in a disease-specific or tissue-specific manner?
- Do metastases originating from different primary sites sculpt the brain TME through similar or distinct

mechanisms?

- How can we overcome the immune-suppressive brain microenvironment?

Glioblastoma: *Most lethal primary brain tumor in adults*

Stupp et al, NEJM (2005)

[·]

Does the brain microenvironment represent an actionable target?

Which cell types/ pathways should therapeutic interventions be directed towards?

Exploring and Exploiting the Brain Tumor Microenvironment

Exploring and Exploiting the Brain Tumor Microenvironment

Exploring and Exploiting the Brain Tumor Microenvironment

Klemm et al, *Cell* (2020); Maas*, Soukup*, Klemm* et al, ms in preparation

Exploring the Immune Landscape of Brain Tumors

Klemm et al, Cell (2020)

Exploring the Immune Landscape of Brain Tumors

Klemm et al, Cell (2020)

B Cells NK Cells

Exploring the Immune Landscape of Brain Tumors

Klemm et al, Cell (2020)

Klemm et al, Cell (2020)

Klemm et al, Cell (2020)

Cell type-specific and disease-specific patterns of TAM 'education' as well as shared pathways between MG & MDMs

Klemm et al, Cell (2020)

Unraveling the Complexity of the Immune Landscape in Brain Cancers

IDH mutant (LGG)

Microglia-rich

IDH wt (HGG)

High accumulation of MDMs More neutrophils, few T cells

Klemm et al, Cell (2020)

Unraveling the Complexity of the Immune Landscape in Brain Cancers

Brain metastases

Lung

Breast

Substantial accumulation of cells from the periphery: T cells, neutrophils, MDMs. Few NK cells, B cells, Tregs Melanoma

Very high accumulation of T cells from the periphery: CD8+ > CD4+ > neutrophils > MDMs

Klemm et al, Cell (2020)

Unraveling the Complexity of the Immune Landscape in Brain Cancers

Exploring and Therapeutically Exploiting the Tumor Microenvironment

Diversity of Macrophage Populations, Phenotypes, and Targeting Strategies

Adapted from: Mantovani et al, *Nat Rev Clinical Oncology* (2017) Quail & Joyce, *Clinical Cancer Research* (2017)

Targeting TAMs using Inhibitors of Colony Stimulating Factor-1 Receptor (CSF-1R)

Targeting TAMs using Inhibitors of Colony Stimulating Factor-1 Receptor (CSF-1R)

CSF-1R Inhibition Regresses Established High-Grade Preclinical Gliomas

Quail et al, Science (2016); Pyonteck et al, Nature Medicine (2013)

CSF-1R Inhibitors/ TAM-Targeted Therapies in Clinical Development

Drug name	Target	Inhibitor type
Clodronate	NA	Small molecule
Zoledronic acid	NA	Small molecule
Trabectedin	Caspase 8	Small molecule
PLX7486	CSF1R	Small molecule
JNJ-40346527	CSF1R	Small molecule
ARRY-382	CSF1R	Small molecule
BLZ945	CSF1R	Small molecule
IMC-CS4	CSF1R	mAb
R05509554	CSF1R	mAb
RG7155	CSF1R	mAb
FPA008	CSF1R	mAb

setta and Pollard, Nat Rev Drug Discovery (2018)

How do standard of care therapies change the TME, including TAMs? Do these alterations modulate therapeutic efficacy?

Tap et al, NEJM (2015)

Longitudinal Analyses of IME Alterations Following Therapeutic Intervention

Longitudinal Analyses Following Radiation Therapy: Response and Recurrence

Longitudinal Analyses Following Radiation Therapy: Response and Recurrence

Blocking Infiltration of Monocyte-Derived Macrophages (MDMs) in Gliomas

Does blockade of MDM infiltration have an effect on glioma recurrence postirradiation?

Blocking MDM Infiltration into Gliomas Following Radiation Enhances Survival

Analysis of Phenotypic Alterations in the Irradiated Glioma Microenvironment

Analysis of Phenotypic Alterations in the Irradiated Glioma Microenvironment

CSF-1R Inhibition in Combination with Radiation Enhances Survival

Akkari et al, Science Translational Medicine (2020)

Quail et al, Science (2016)

Daily Administration of CSF-1R Inhibitor is Critical for Efficacy

Akkari et al, Science Translational Medicine (2020)

Gaining Insights into the *Dynamics* of the Brain Tumor Microenvironment

@ CHUV Lausanne

Acknowledgements

