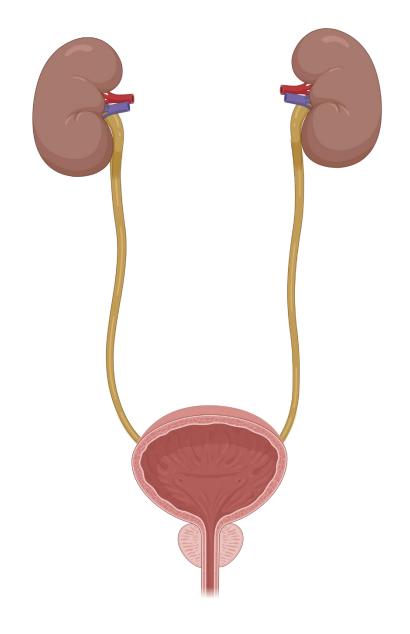


Immunotherapy for the Treatment of Genitourinary Malignancies

Ryan D. Stephenson, DO
Assistant Professor of Medicine
Rutgers Cancer Institute of New Jersey

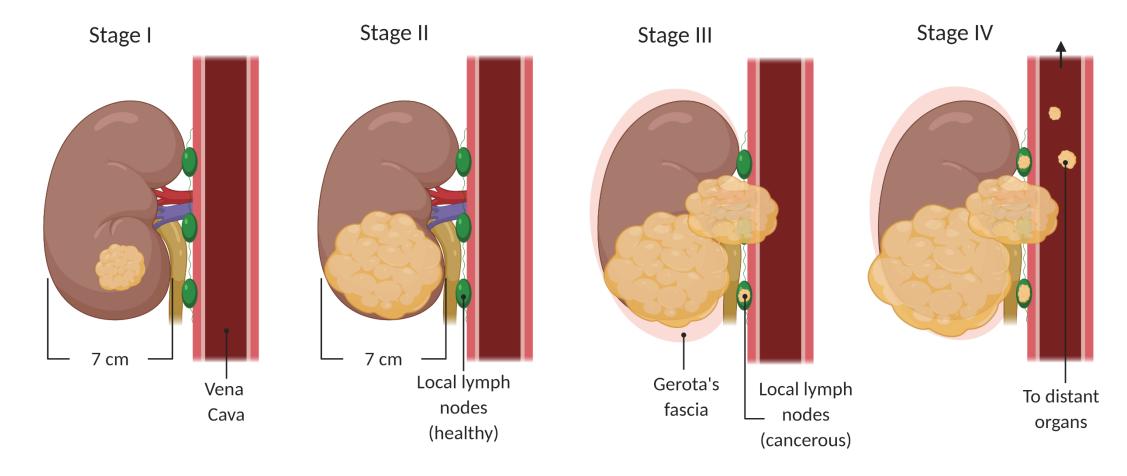
Disclosures

- No relevant financial relationships to disclose
- I will be discussing non-FDA approved indications during my presentation.



Outline

- Renal cell carcinoma
 - Approved immunotherapies
 - Future directions
- Urothelial carcinoma
 - Approved immunotherapies
 - Future directions
- Prostate cancer
 - Approved immunotherapies
 - Future directions



Renal cell carcinoma (RCC)

Risk Stratification

MSKCC Prognostic Factors	IMDC Prognostic Factors
Interval from diagnosis to treatment of less than 1 year	Interval from diagnosis to treatment of less than 1 year
KPS < 80%	KPS < 80%
LDH > 1.5 x ULN	Elevated Calcium
Elevated Corrected Calcium	Decreased Hemoglobin
Decreased Hemoglobin	Elevated Neutrophils
	Elevated Platelets

Prognostic Risk Group	Number of Prognostic Factors
Low Risk (MSKCC) Favorable Risk (IMDC)	0
Intermediate Risk	1 – 2
Poor Risk	3 or more

FDA-approved immunotherapies for mRCC

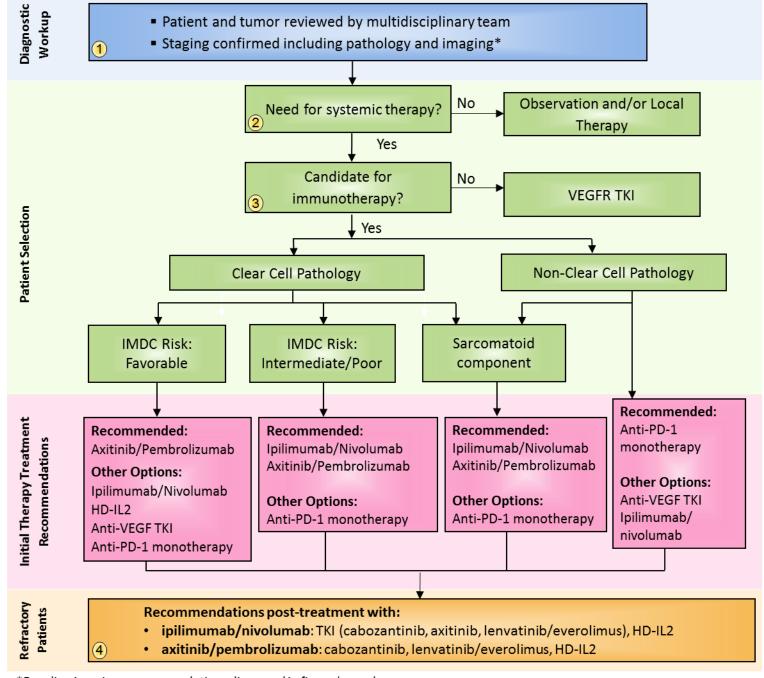
Drug	Indication	Dose
High dose Interleukin-2	Metastatic RCC	600,000 International Units/kg (0.037 mg/kg) IV q8hr infused over 15 minutes for a maximum 14 doses, THEN 9 days of rest, followed by a maximum of 14 more doses (1 course)
Interferon-α + bevacizumab	Clear cell RCC	IFN 9 MIU s.c. three times a week + bevacizumab 10 mg/kg Q2W
Nivolumab	Clear cell RCC refractory to prior VEGF targeted therapy	240 mg Q2W or 480 mg Q4W
Nivolumab + ipilimumab	Clear cell RCC, treatment naïve	3 mg/kg nivo plus 1 mg/kg ipi Q3W x 4 doses then nivo maintenance at flat dosing
Pembrolizumab + axitinib	Advanced RCC, Treatment naïve	200 mg pembro Q3W or 400 mg Q6W + 5 mg axitinib twice daily
Avelumab + axitinib	Advanced RCC, Treatment naïve	800 mg avelumab Q2W + 5 mg axitinib twice daily
Nivolumab + cabozantinib	First-line advanced RCC	240 mg nivolumab Q2W or 480 mg Q4W + cabozantinib 40 mg daily

Front-line immunotherapy treatments for RCC

Study	Treatment arm(s)	Patient selection criteria	N	ORR	Median PFS (months)	Median OS (months)
CheckMate 214	Nivolumab + ipilimumab*	Untreated, advanced clear cell RCC	550	42%	12.0	47.0
	Sunitinib	(poor/intermediate risk)	546	26%	8.3	26.6
JAVELIN Renal 101	Avelumab + axitinib*	Untreated, advanced clear cell RCC	442	52.5%	ITT: 13.3 PD-L1+: 13.8	ITT: NE PD-L1+: NE
	Sunitinib		444	27.3%	ITT: 8.0 PD-L1+: 7.0	ITT: NE PD-L1+: 25.6
IMmotion151	Atezolizumab + bevacizumab	Untreated, advanced clear cell or	454	ITT: 37% PD-L1+: 43%	ITT: 11.2 PD-L1+: 11.2	ITT: 33.6 PD-L1+: 34.0
	Sunitinib	sarcomatoid RCC	461	ITT: 33% PD-L1+: 35%	ITT: 8.4 PD-L1+: 7.7	ITT: 34.9 PD-L1+: 32.7

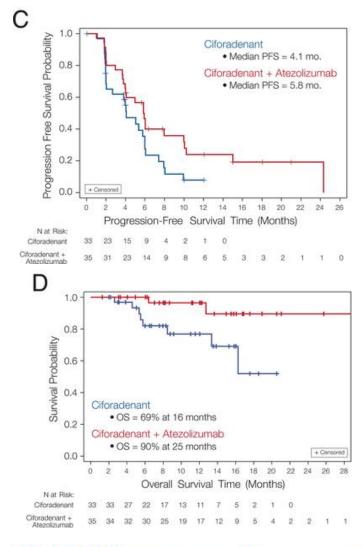
Front-line immunotherapy treatments for RCC

Study	Treatment arm(s)	Patient selection criteria	N	ORR	Median PFS (months)	Median OS (months)
KEYNOTE-426	Pembrolizumab + axitinib*	Untreated, advanced clear cell RCC	432	60%	15.4	NE (HR 0.68, p=0.0003)
	Sunitinib		429	40%	11.1	35.7
CheckMate 9ER	Nivolumab + cabozantinib*	Untreated, advanced clear cell RCC	323	55.7%	16.6	NE (HR 0.60, p=0.001)
	Sunitinib		328	27.1%	8.3	NE
CLEAR	Pembrolizumab + lenvatinib	Untreated, advanced clear cell RCC	355	71%	23.9	NE (HR 0.66 vs sunitinib, p=0.005)
	Everolimus + lenvatinib		357	53.5%	14.7	NE (HR 1.15 vs sunitinib, p=0.30)
	Sunitinib		357	36.1%	9.2	NE



SITC Cancer
Immunotherapy
Guideline for
advanced renal
cell carcinoma

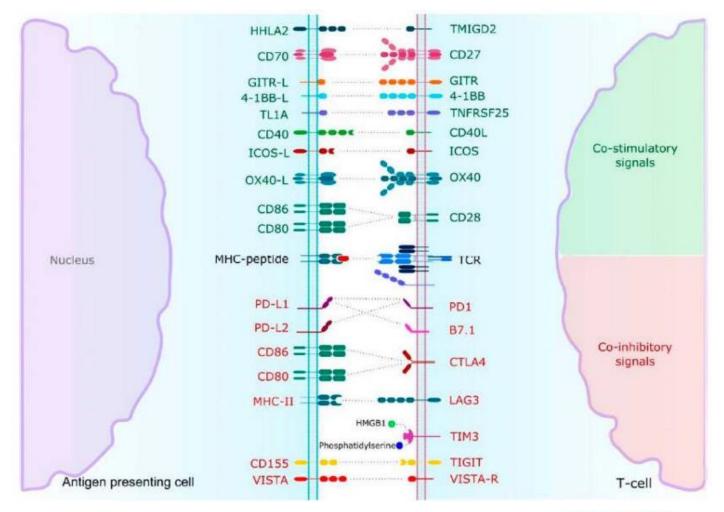
^{*}Baseline imaging recommendations discussed in figure legend.


Notes: 1) Clinical Trials are always an option for any patient, in any category. 2) This recommendation may change as data matures.

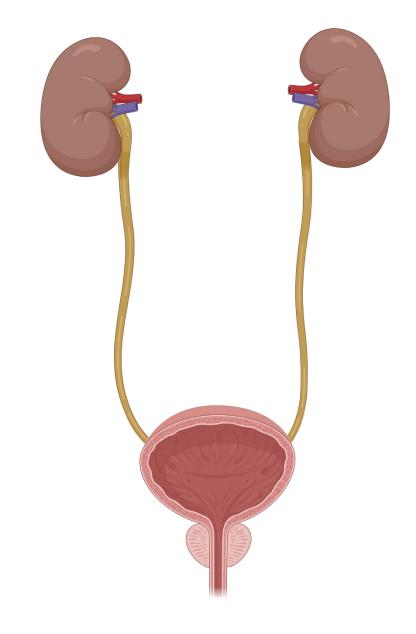
In development: A2AR antagonist +

anti-PD-L1

Treatment arm	N	ORR	6-month disease control
Ciforadenant	iforadenant 33 3%	3%	Naïve: 0%
			Prior ICI: 25%
Ciforadenant + 35 atezolizumab	35	11%	Naïve: 50%
			Prior ICI: 35%

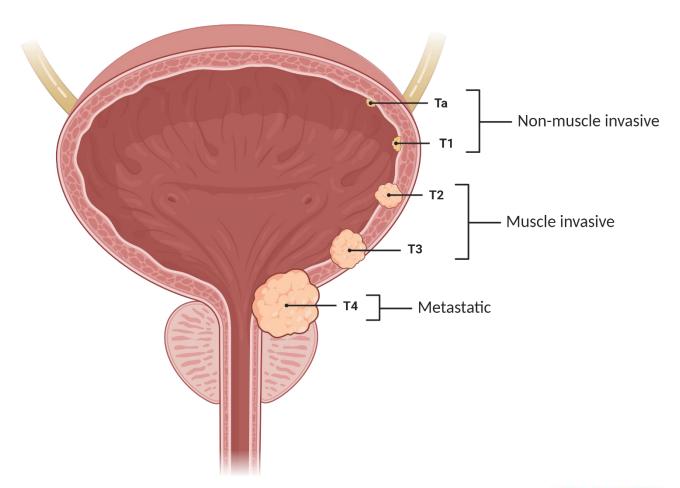


In development: additional immunotherapy approaches



Outline

- Renal cell carcinoma
 - Approved immunotherapies
 - Future directions
- Urothelial carcinoma
 - Approved immunotherapies
 - Future directions
- Prostate cancer
 - Approved immunotherapies
 - Future directions



Urothelial carcinoma (UC)

Approved checkpoint inhibitor for non-muscle invasive bladder cancer

Drug	Indication	Dose
Pembrolizumab	BCG-unresponsive, high-risk NMIBC, with or without papillary tumors and ineligible for cystectomy	200 mg Q3W or 400 mg Q6W

Response, n (%)	KEYNOTE-057 cohort A (n=97)
Complete response	40 (41.2)
Non-complete response	56 (57.7)
Persistent	40 (41.2)
Recurrent	6 (6.2)
NMIBC stage progression	9 (9.3)
Progression to T2	0
Extravesical disease	1 (1.0)
Non-evaluable	1 (1.0)

Approved checkpoint inhibitors for mUC – *cisplatin refractory*

Drug	Indication	Dose
Avelumab	Advanced/metastatic UC	10 mg/kg Q2W
Nivolumab	Advanced/metastatic UC	240 mg Q2W or 480 mg Q4W
Pembrolizumab	Advanced/metastatic UC	200 mg Q3W or 400 mg Q6W

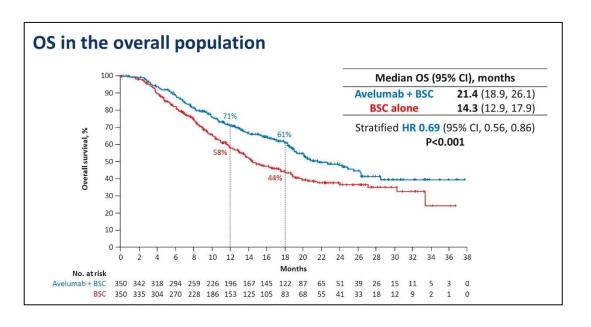
Approved checkpoint inhibitors for mUC – *cisplatin ineligible*

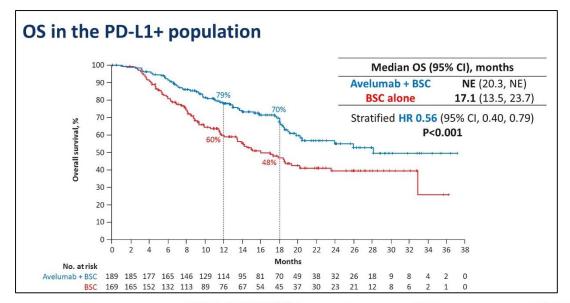
Drug	Indication	Dose
Atezolizumab	Advanced/metastatic UC (PD-L1 ≥5%)	1200 mg Q3W
Pembrolizumab	Advanced/metastatic UC (PD-L1 CPS ≥10)	200 mg Q3W or 400 mg Q6W

June 2018

FDA limits the use of atezolizumab and pembrolizumab for some urothelial cancer patients

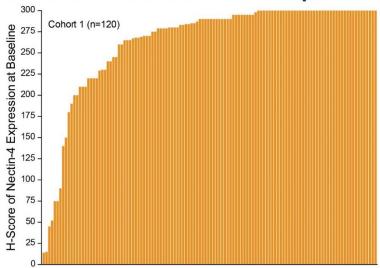
- Locally advanced or metastatic urothelial carcinoma and ineligible for cisplatin-based chemo and with detectable PD-L1 expression in tumor (CPS \geq 10, pembro; IC \geq 5% tumor area, atezo)
- Patients ineligible for any platinum-containing chemotherapy regardless of PD-L1 status



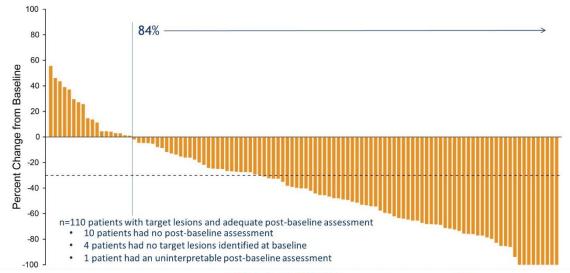


Approved checkpoint inhibitor for maintenance treatment

Drug	Indication	Dose
Avelumab	Maintenance of locally advanced/metastatic UC without progression on first-line Pt chemotherapy	800 mg Q2W



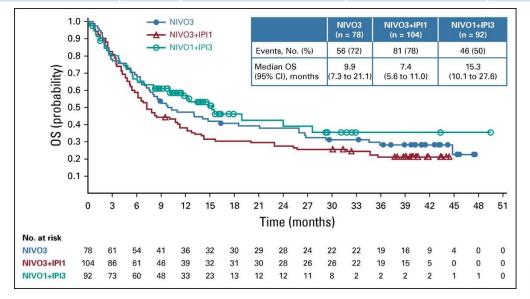
Approved antibody-drug conjugate for mUC


Drug	Indication	Dose
Enfortumab vedotin	Locally advanced/metastatic UC with previous aPD-1/PD-L1 and Pt-based chemotherapy	1.25 mg/kg IV on days 1, 8, and 15 of each 28-day cycle

EV-201: Cohort 1 Nectin-4 Expression

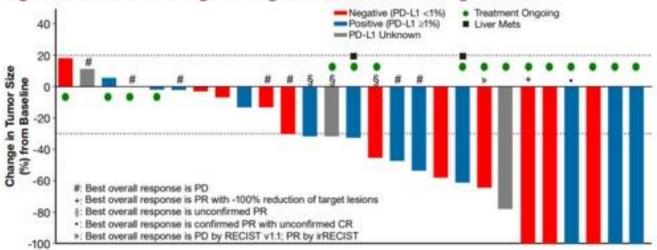
¹ Five patients did not have adequate tissue for Nectin-4 testing

EV-201: Cohort 1 Change in Tumor Measurements per BICR



In development: Ipilimumab + Nivolumab CheckMate 032

Treatment arm	n	ORR	Median PFS	Median OS	Grade 3-4 TRAEs
Nivolumab 3 mg/kg Q3W	78	ITT: 25.6% PD-L1+: 26.9%	2.8 months	9.9 months	26.9%
Nivolumab 3 mg/kg + ipilimumab 1 mg/kg	104	ITT: 26.9% PD-L1+: 35.5%	2.6 months	7.4 months	30.8%
Nivolumab 1 mg/kg + ipilimumab 3 mg/kg	92	ITT: 38.0% PD-L1+: 58.1%	4.9 months	15.3 months	39.1%

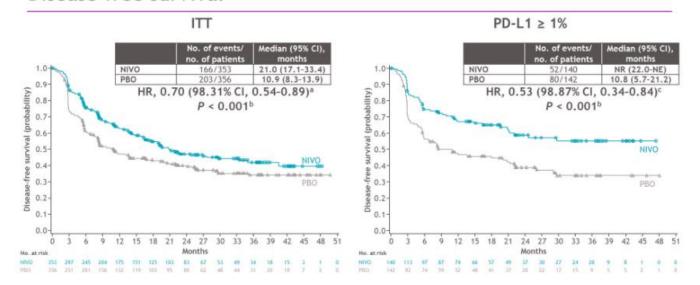


In development: NKTR-214 + nivolumab

Treatment	n	ORR
NKTR-214 + nivolumab	27	48%

After treatment, 70% of patients with PD-L1-negative tumors converted to PD-L1-positive.

Figure 2. Best Percentage Change from Baseline in Target Lesions



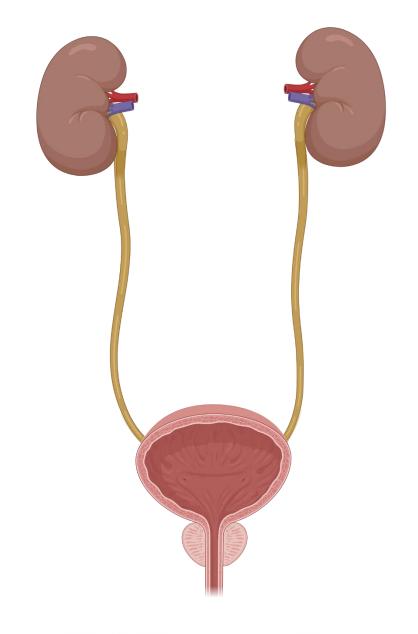
In development: Adjuvant nivolumab Checkmate 274

Treatment arm	n	Median DFS	Median NUTRFS	Median Distant Mets Free Survival
Nivolumab 240 mg Q3W	353 140	- · · · · · · · · · · · · · · · · · · ·	ITT: 24.6 (19.2 – 35.0) PD-L1+: NR (26.0 – NE)	ITT: 35.0 (24.5 – NE) PD-L1+: NR (33.9 – NE)
Placebo	356 142	ITT: 10.9 (8.3 – 13.9) PD-L1+: 10.8 (5.7 – 21.2)	ITT: 13.7 (8.4 – 20.7) PD-L1+: 10.9 (5.8 – 22.1)	ITT: 29.0 (14.7 – NE) PD-L1+: 21.2 (10.6 – NE)

Disease-free survival

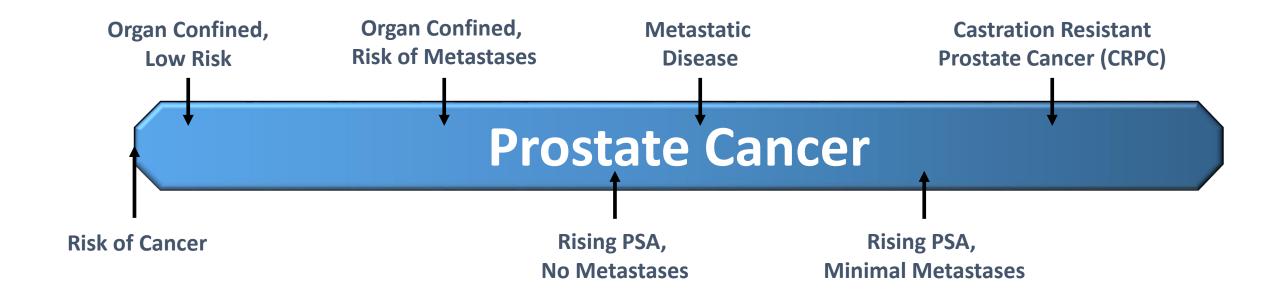
Minimum follow-up, 5.9 months

DFS was defined as the time between the date of randomization and the date of first recurrence (local unothelial tract, local non-unothelial tract or distant) or death. HR, 0.695 (98.31% Cl, 0.541-0.394). *Based on a 2-sided stratified logrank test. *HR, 0.535 (98.87% Cl, 0.340-0.842). Cl, confidence interval; NE, not estimable; NR, not reached.

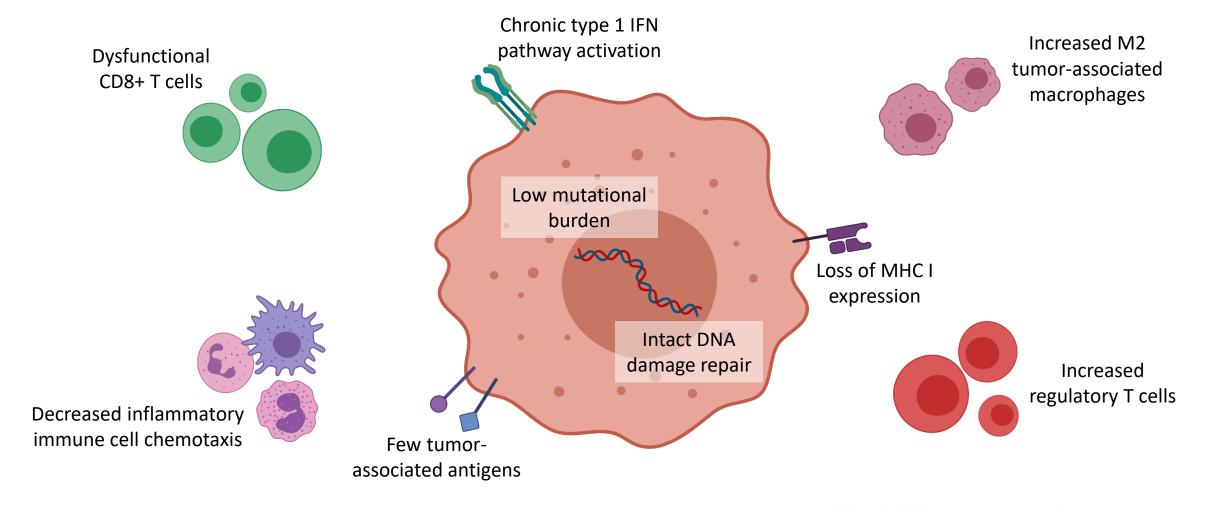


Outline

- Renal cell carcinoma
 - Approved immunotherapies
 - Future directions
- Urothelial carcinoma
 - Approved immunotherapies
 - Future directions
- Prostate cancer
 - Approved immunotherapies
 - Future directions



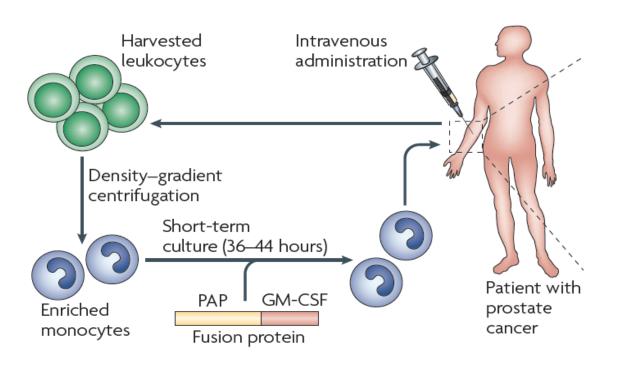
The Spectrum of Prostate Cancer

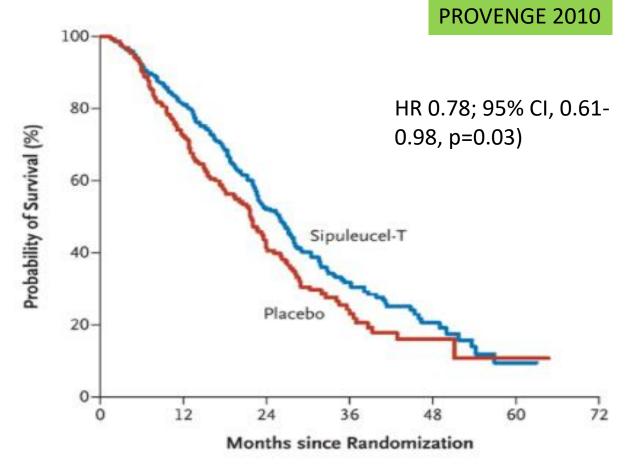


Immunology of prostate cancer

Immunotherapy landscape in prostate cancer

Trial	Treatment	Population	Key results	
KEYNOTE-199	Pembrolizumab	RECIST-measurable PD-L1+ mCRPC	ORR: 5%	
		RECIST-measurable PD-L1- mCRPC	ORR: 3%	
		RECIST nonmeasurable mCRPC	DCR: 37%	
KEYNOTE-365	Pembrolizumab + enzalutamide	Progression on previous hormonal and chemotherapies	PSA response rate: 21.8% Median OS: 20.4 months	
	Pembrolizumab + olaparib		PSA response rate: 13% Median OS: 14 months	
IMbassador250	Atezolizumab + enzalutamide	Progression on previous hormonal and chemotherapies	Median OS: 15.2 vs 16.6 months	
	Enzalutamide			





Sipuleucel-T in mCRPC

First anti-cancer therapeutic vaccine

Future directions for prostate cancer immunotherapy

Nivolumab + ipilimumab

PSA, PSMA, PAP,

EpCAM CAR T cells

Immune checkpoint inhibitor

Immune checkpoint inhibitor

Immune checkpoint inhibitor

Targeted therapies

Anti-PD-1 + antiandrogen therapy

Adoptive cellular therapies

Bispecific T cell engagers

PSMA/CD3 antibody conjugates

In development: nivolumab + ipilimumab in mCRPC

Trial	Treatment	Population	ORR	Median OS
CheckMate 650	Nivolumab + ipilimumab,	Progression on hormonal therapy, no chemotherapy	25%	19 months
	then nivolumab maintenance	Progression on chemotherapy	10%	15.2 months

• Higher ORR in:

- PD-L1 > 1%
- DNA damage repair deficient
- homologous recombination deficiency
- high tumor mutational burden

Conclusions

- The role of immunotherapy in GU malignancies is increasing
- In RCC, many front-line checkpoint inhibitor options are approved
- Multiple checkpoint inhibitors approved for advanced/metastatic urothelial carcinoma, as well as other settings in UC
- Low immune engagement in prostate cancer has limited the application of immunotherapy in this disease

Additional Resources

Rini et al. Journal for ImmunoTherapy of Cancer https://doi.org/10.1186/s40425-019-0813-8 (2019) 7:354

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of advanced renal cell carcinoma (RCC)

Brian I. Rini¹, Dena Battle², Robert A. Figlin³, Daniel J. George⁴, Hans Hammers⁵, Tom Hutson⁶, Eric Jonasch⁷, Richard W. Joseph⁸, David F. McDermott⁹, Robert J. Motzer¹⁰, Sumanta K. Pal¹¹, Allan J. Pantuck¹², David I. Quinn¹³, Virginia Seery⁹, Martin H. Voss¹⁰, Christopher G. Wood⁷, Laura S. Wood¹ and Michael B. Atkins^{14*}

McNeel et al. Journal for ImmunoTherapy of Cancer (2016) 4:92 DOI 10.1186/s40425-016-0198-x

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of prostate carcinoma

Douglas G. McNeel¹, Neil H. Bander², Tomasz M. Beer³, Charles G. Drake⁴, Lawrence Fong⁵, Stacey Harrelson⁶, Philip W. Kantoff⁷, Ravi A. Madan⁸, William K. Oh⁹, David J. Peace¹⁰, Daniel P. Petrylak¹¹, Hank Porterfield¹², Oliver Sartor¹³, Neal D. Shore⁶, Susan F. Slovin⁷, Mark N. Stein¹⁴, Johannes Vieweg¹⁵ and James L. Gulley^{16*}

Kamat et al. Journal for ImmunoTherapy of Cancer (2017) 5:68 DOI 10.1186/s40425-017-0271-0

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of bladder carcinoma

Ashish M. Kamat^{1*}, Joaquim Bellmunt², Matthew D. Galsky³, Badrinath R. Konety⁴, Donald L. Lamm⁵, David Langham⁶, Cheryl T. Lee⁷, Matthew I. Milowsky⁸, Michael A. O'Donnell⁹, Peter H. O'Donnell¹⁰, Daniel P. Petrylak¹¹, Padmanee Sharma¹², Eila C. Skinner¹³, Guru Sonpavde¹⁴, John A. Taylor Ill¹⁵, Prasanth Abraham¹⁶ and Jonathan E. Rosenberg¹⁷

Acknowledgements

Some figures created using biorender.com

Case Studies

Case Study 1

56 year old man presents with 3 months of left flank pain, cough, progressive dyspnea and intermittent hematuria.

Vital Signs:

• T 97.2°F HR 102 RR 16 BP 111/69 O2 Sat 98%

Labs:

- Hemoglobin 7.2
- Corrected Calcium 11.9
- ANC 14.6
- Platelets 959



CT Chest/Abd/Pelvis w/ contrast

Case Study 1

CT Chest/Abdomen/Pelvis

- Right lower lobe pulmonary embolism
- Numerous bilateral pulmonary nodules, largest 2.9 cm in left lower lobe
- 7.1 x 8.3 x 9.7 cm mass of the left kidney
- Adjacent metastatic seeding with lesions measuring 2.1 cm, 1.7 cm, 1.1 cm
- Bulky retroperitoneal lymph nodes, largest 4.5 x 4.0 cm
- No lytic bone metastases

Bone Scan:

No metastases

Kidney Biopsy:

Clear cell renal cell carcinoma

Question 1

Which of the following is the most appropriate first line therapy for this patient?

- A) High-dose IL-2
- B) Ipilimumab/Nivolumab
- C) Sunitinib
- D) Lenvatinib/Everolimus

Question 1

Which of the following is the most appropriate first line therapy for this patient?

- A) High-dose IL-2: Reserved for selected patients with excellent performance status and normal organ function
- B) Ipilimumab/Nivolumab: CheckMate 214 trial showed benefit over sunitinib, with 42% response rate, 12 month PFS and 47 month overall survival.
- C) Sunitinib: Previous role as 1st line therapy has been replaced among all risk categories by combination IO/TKI or IO/IO.
- D) Lenvatinib/Everolimus: FDA approved in 2016 to be used after prior anti-angiogenic therapy (2nd line). Arm in recent CLEAR trial showed improved PFS and response rate, but no overall survival benefit compared to sunitinib.

Case Study 2

77 year old woman presents with persistent cough.

- Diagnosed with recurrent pT1 high-grade urothelial carcinoma s/p multiple TURBTs
- Completed BCG x6 doses
- Recent admission for hemorrhagic shock from gross hematuria, now s/p TURBT with pT2 lesion and palliative radiation
- Ambulates at home, but requires wheelchair assistance from lobby to exam room due to dyspnea

• PMH:

 Hypertension, Hyperlipidemia, DM2, CAD, HFrEF 30%, Carotid Artery Stenosis, TIA, PAD s/p femoral artery stent, Stage 4 CKD with Cr Cl 25 mL/min

Social History:

40 pack year cigarette smoking history, quit 5 years ago

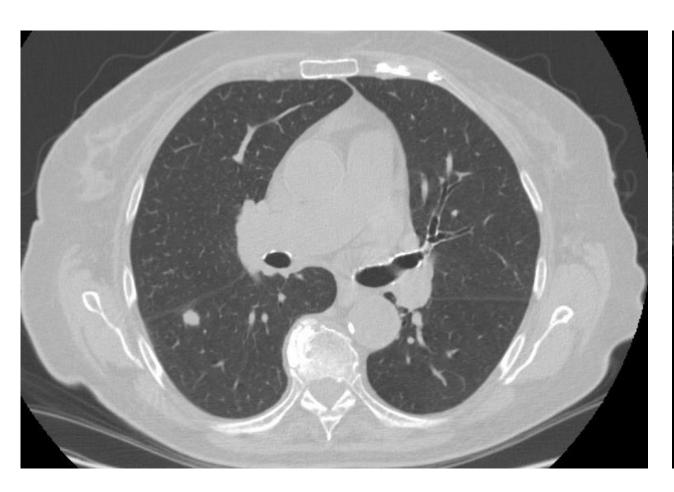
Case Study 2

Vitals:

• T 97.7°F, HR 77 RR 16 BP 106/51 O2 sat 98%

Labs:

- WBC 7.7, Hemoglobin 10.3, Platelets 341
- BUN 25, Creatinine 2.02, K 5.0, eGFR 25
- LFTs normal



CT Chest/Abd/Pelvis w/o contrast

Case Study 2

CT: Chest/Abdomen/Pelvis without contrast

- Multiple pulmonary nodules bilaterally, new from prior, largest up to 15 mm in size
- Asymmetric right bladder wall thickening up to 19 mm

MR Pelvis w/o contrast:

• Bladder mass $(1.9 \times 2.6 \times 2.8 \text{ cm})$ centered along the anterior bladder wall extending to the neck, with probable muscle invasion without definitive extension beyond the serosa.

CT Guided Lung Biopsy

Urothelial Carcinoma

TURBT

- Urothelial Carcinoma
- PD-L1 CPS 50%
- No alterations in FGFR 2 or FGFR 3

Question 2

Which of the following is the most appropriate first line therapy for this patient?

- A) Cisplatin/Gemcitabine
- B) Carboplatin/Gemcitabine
- C) Pembrolizumab
- D) Enfortumab Vedotin

Question 2

Which of the following is the most appropriate first line therapy for this patient?

- A) Cisplatin/Gemcitabine: Cisplatin ineligible due to low Cr Cl
- B) Carboplatin/Gemcitabine: "Platinum ineligible" due to low GFR, NYHA Class 3 Heart Failure.
- C) Pembrolizumab: Indicated as patient has CPS > 10%. It would also be indicated regardless of CPS as patient is "platinum ineligible" due to Cr Cl < 30 and NYHA Class 3 heart failure.
- D) Enfortumab Vedotin: Indicated following progression on anti-PD1 therapy

