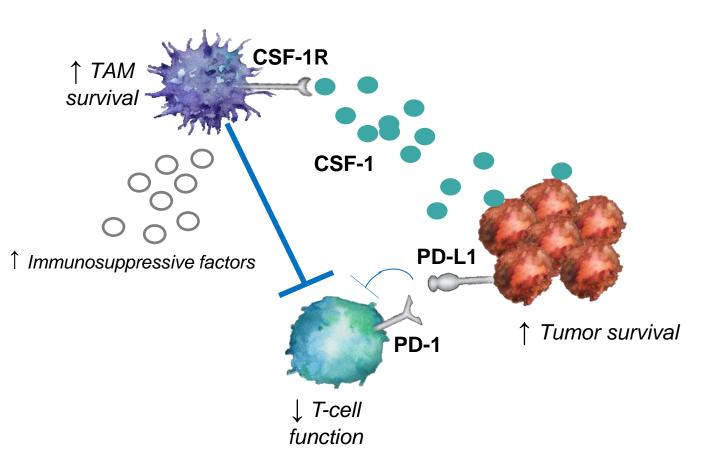


First-in-Human Phase 1 Dose Escalation and Expansion of a Novel Combination, Anti–CSF-1 Receptor (cabiralizumab) Plus Anti–PD-1 (nivolumab), in Patients With Advanced Solid Tumors

Zev A. Wainberg,¹ Sarina A. Piha-Paul,² Jason Luke,³ Edward J. Kim,⁴ John A. Thompson,⁵ Carolyn D. Britten,⁶ Jennifer M. Johnson,⁷ Nicklas Pfanzelter,⁸ Michael Gordon,⁹ Drew W. Rasco,¹⁰ F. Stephen Hodi,¹¹ Amy Weise,¹² Sandeep Inamdar,¹³ Serena Perna,¹⁴ Christy Ma,¹³ Janine Powers,¹³ Yeonju Lee,¹³ Majid Ghoddusi,¹³ Michael Carleton,¹⁴ Hong Xiang,¹³ Lei Zhou,¹³ Helen Collins,¹³ James J. Lee¹⁵

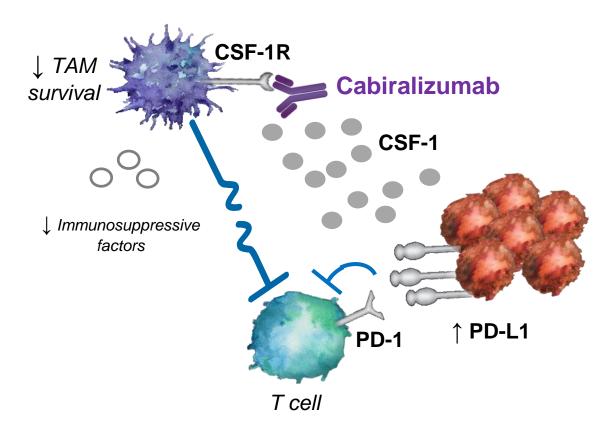
¹UCLA Medical Center, Los Angeles, CA; ²The University of Texas MD Anderson Cancer Center, Houston, TX; ³University of Chicago Medical Center, Chicago, IL; ⁴UC Davis Cancer Center, Sacramento, CA; ⁵University of Washington, Seattle Cancer Center, Seattle, WA; ⁶Medical University of South Carolina, Charleston, SC; ⁷Sidney Kimmel Cancer Center, Jefferson University, Philadelphia, PA; ⁸Rush University Medical Center, Chicago, IL; ⁹Honor Health Research Institute, Scottsdale, AZ; ¹⁰South Texas Accelerated Research Therapeutics, San Antonio, TX; ¹¹Dana-Farber Cancer Institute, Boston, MA; ¹²Barbara Ann Karmanos Cancer Institute, Detroit, MI; ¹³FivePrime Therapeutics, South San Francisco, CA; ¹⁴Bristol-Myers Squibb, Princeton, NJ; ¹⁵University of Pittsburgh Cancer Institute, Pittsburgh, PA


Presenter Disclosures

- Dr Wainberg has no relationships related to this presentation to disclose
 - Outside the scope of this work, he has received consulting fees from FivePrime, Merck, Novartis, and Genentech

There will be discussion about the use of products for non–FDA-approved indications in this presentation

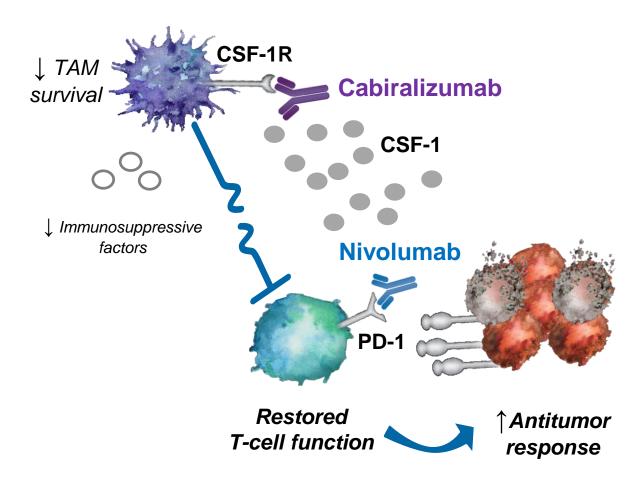
Rationale for Cabiralizumab in Combination With Nivolumab



- TAMs inhibit antitumor T-cell activity in the tumor microenvironment^{1,2}
 - In pancreatic and other cancers, high levels of TAMs are associated with poor prognosis³⁻⁵
 - Signaling through the CSF-1 receptor promotes the maintenance and function of TAMs^{1,2}

CSF-1 = colony stimulating factor 1; TAM = tumor-associated macrophage; PD-1 = programmed death-1 1. Ries CH, et al. *Cancer Cell* 2014;25:846–859. 2. Cannarile M, et al. *J ImmunoTher Cancer* 2017;5:53. 3. Hu H, et al. *Tumour Biol* 2016;37:8657–8664. 4. Kurahara H, et al. *J Surg Res* 2011;167:e211–e219. 5. Goswami KK, et al. *Cell Immunol* 2017;316:1–10.

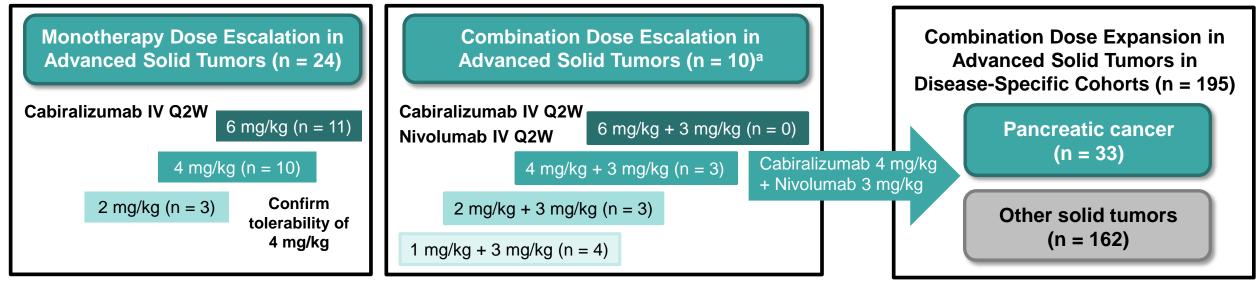
Rationale for Cabiralizumab in Combination With Nivolumab



- TAMs inhibit antitumor T-cell activity in the tumor microenvironment^{1,2}
 - In pancreatic and other cancers, high levels of TAMs are associated with poor prognosis³⁻⁵
 - Signaling through the CSF-1 receptor promotes the maintenance and function of TAMs^{1,2}
- Cabiralizumab is a humanized IgG4 mAb that blocks CSF-1R⁶ and depletes TAMs

CSF-1 = colony stimulating factor 1; TAM = tumor-associated macrophage; IgG = immunoglobulin G, mAb = monoclonal antibody; PD-1 = programmed death-1 1. Ries CH, et al. *Cancer Cell* 2014;25:846–859. 2. Cannarile M, et al. *J ImmunoTher Cancer* 2017;5:53. 3. Hu H, et al. *Tumour Biol* 2016;37:8657–8664. 4. Kurahara H, et al. *J Surg Res* 2011;167:e211–e219. 5. Goswami KK, et al. *Cell Immunol* 2017;316:1–10. 6. Bellovin D, et al. *Cancer Res* 2017;77 (13 suppl) [abstract 1599]).

Rationale for Cabiralizumab in Combination With Nivolumab



- TAMs inhibit antitumor T-cell activity in the tumor microenvironment^{1,2}
 - In pancreatic and other cancers, high levels of TAMs are associated with poor prognosis³⁻⁵
 - Signaling through the CSF-1 receptor promotes the maintenance and function of TAMs^{1,2}
- Cabiralizumab is a humanized IgG4 mAb that blocks CSF-1R⁶ and depletes TAMs
- Preclinical data suggest that CSF-1R inhibition synergizes with PD-1 blockade to enhance antitumor activity⁷

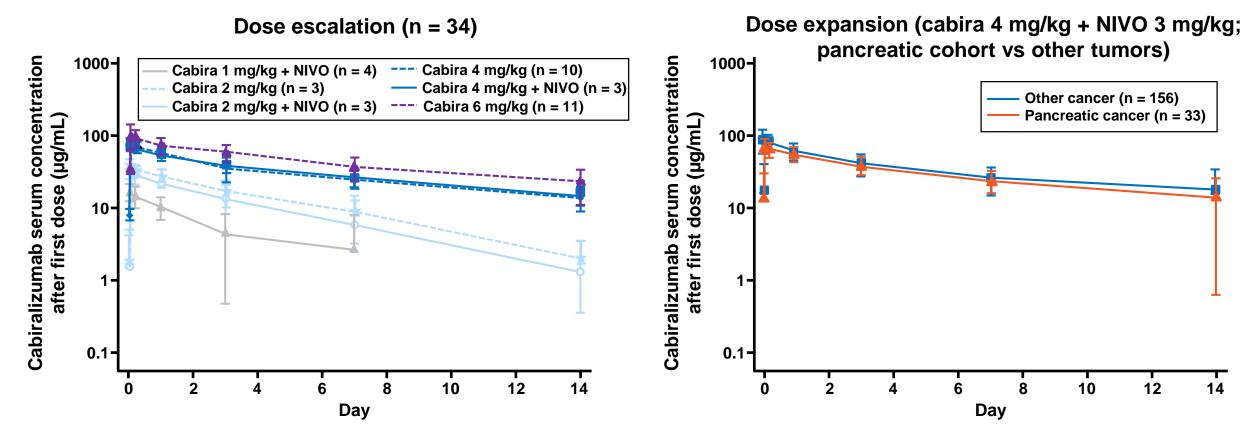
CSF-1 = colony stimulating factor 1; TAM = tumor-associated macrophage; IgG = immunoglobulin G, mAb = monoclonal antibody; PD-1 = programmed death-1 1. Ries CH, et al. *Cancer Cell* 2014;25:846–859. 2. Cannarile M, et al. *J ImmunoTher Cancer* 2017;5:53. 3. Hu H, et al. *Tumour Biol* 2016;37:8657–8664. 4. Kurahara H, et al. *J Surg Res* 2011;167:e211–e219. 5. Goswami KK, et al. *Cell Immunol* 2017;316:1–10. 6. Bellovin D, et al. *Cancer Res* 2017;77 (13 suppl) [abstract 1599]). 7. Zhu Y, et al. *Cancer Res* 2014;74:5057–5069.

FPA008-003 First-in-Human Phase 1a/1b Dose-Escalation Study of Cabiralizumab ± Nivolumab in Advanced Solid Tumors

August 1, 2017, cutoff

Primary objectives: safety/tolerability, dose-limiting toxicities

Secondary objectives: immunogenicity, PK, pharmacodynamics, preliminary antitumor activity^b


^aInitiated after corresponding monotherapy doses were deemed tolerable. ^bPrimary objective for expansion phase IV = intravenous; PK = pharmacokinetics; Q2W = every 2 weeks

Baseline Demographics and Prior Therapy

	Cabiralizumab monotherapy (n = 24)	Cabiralizumab + nivolumab (n = 205)
Median age (range), years	65.5 (48–88)	64 (25–85)
< 65 years, n (%)	10 (42)	110 (54)
Male, n (%)	13 (54)	100 (49)
ECOG performance status, n (%)		
0	7 (29)	55 (27)
1	17 (71)	145 (71)
2	0 Ó	4 (2)
Not reported	0	1 (<1)
No. of prior regimens, n (%)		
0	0	7 (3)
1	5 (21)	47 (23)
2	2 (8)	58 (28)
≥ 3	17 (71)	93 (45)
No. of prior regimens for metastatic		
disease, n (%)		
0	7 (29)	77 (38)
1	6 (25)	28 (14)
2	3 (13)	44 (21)
≥ 3	8 (33)	56 (27)

ECOG = Eastern Cooperative Oncology Group

Cabiralizumab Demonstrated Target-Mediated Clearance and Low Immunogenicity

- Cabiralizumab PK is similar when administered as a monotherapy or in combination with nivolumab
- PK of cabiralizumab ≥ 4 mg/kg Q2W approaches the linear dose range, suggesting saturation of target-mediated clearance
- Exposure with the cabiralizumab 4 mg/kg dose in the presence of nivolumab was similar across tumor types
- Cabiralizumab ± nivolumab demonstrated low immunogenicity (data not shown)

FPA008-003

FPA008-003 Cabiralizumab ± Nivolumab Depleted Circulating Monocytes in Patients With Advanced Solid Tumors

Dose escalation (n = 33)Dose expansion (cabira 4 mg/kg + NIVO 3 mg/kg; pancreatic cohort vs other tumors) 100-100-Cabira 1 mg/kg + NIVO (n = 4) monocytes /µL^a in peripheral monocytes/µL^a in peripheral CD14+CD16++ nonclassical CD14+CD16++ nonclassical Other cancer (n = 143)Cabira 2 mg/kg (n = 3) Pancreatic cancer (n = 30)Cabira 2 mg/kg + NIVO (n = 3) first dose blood after first dose 80-80-Cabira 4 mg/kg (n = 10) Cabira 4 mg/kg + NIVO (n = 3) Cabira 6 mg/kg (n = 10) 60-60- after 40 blood 20-20· 12 0 2 14 10 12 10 2 0 14 Day Day

- Decreases in levels of circulating nonclassical monocytes are a pharmacodynamic marker of cabiralizumab and have been observed with other CSF-1R-targeting agents¹⁻³
- Cabiralizumab 4 mg/kg Q2W was the minimal dose required to consistently deplete circulating nonclassical monocytes throughout the dosing interval; results were similar with cabiralizumab 4 mg/kg + nivolumab
- Decreases in levels of nonclassical monocytes were similar across tumor types

^aBars denote 1-sided standard deviation

1. Ries CH, et al. Cancer Cell 2014;25:846-859. 2. Gomez-Roca CA, et al. J Clin Oncol 2015;33(suppl) [abstract 3005]. 3. Anthony S, et al. J Clin Oncol 2011;29(15 suppl) [abstract 3093].

Cabiralizumab ± Nivolumab Demonstrated a Tolerable Safety Profile

- Safety profile of the combination was generally consistent with that of nivolumab^{1,2} and cabiralizumab³ monotherapy
- The most common TRAEs were elevations in creatine kinase and serum liver enzymes (without elevation in bilirubin)
 - These are believed to be secondary to cabiralizumab's depletion of Kupffer cells (macrophages) and were reported with other CSF-1R-targeting agents⁴⁻⁶
 - Isolated enzyme elevations were not associated with other clinical sequelae

FPA008-003

	Cabiralizumab monotherapy (n = 24)		Cabiralizumab + nivolumab (n = 205)	
	Any grade, n (%)	Grade 3–4, n (%)	Any grade, n (%)	Grade 3–4, n (%)
Any TRAE	15 (63)	13 (54)	184 (90)	100 (49)
AEs leading to discontinuation	3 (13)	2 (8)	15 (7)	10 (5)
Clinical TRAEs (≥ 15% of pts treated with combination) Periorbital edema Fatigue Rash Pruritus Nausea Treatment-related laboratory abnormalities of interest	5 (21) 7 (29) 1 (4) 2 (8) 3 (13)	0 0 1 (4) 0 0	84 (41) 74 (36) 38 (19) 34 (17) 30 (15)	1 (<1) 11 (5) 8 (4) 2 (1) 0
Serum enzyme elevations ^a Pancreatic enzyme elevations ^b	10 (42) 3 (13)	9 (38) 2 (8)	103 (50) 42 (20)	40 (20) 24 (12)
Treatment-related deaths		0	3 (1	.5)°

^aIncludes AE terms indicative of elevated CPK, AST, ALT, and LDH. ^bIncludes AE terms indicative of elevated amylase and lipase. ^cIncludes pneumonitis in a patient with thyroid cancer (cabiralizumab 1 mg/kg + nivolumab 3 mg/kg), and respiratory distress (n = 1, cabiralizumab 4 mg/kg + nivolumab) and acute respiratory distress (n = 1, cabiralizumab) in 2 patients with lung cancer. ALT = alanine aminotransferase; AST = aspartate aminotransferase; CPK = creatine phosphokinase; LDH = lactate dehydrogenase; TRAE, treatment-related adverse event

1. Brahmer J, et al. *N Engl J Med* 2015;373:123–135. 2. Ferris RL, et al. *N Engl J Med* 2016;375:1856–1867. 3. Sankhala K, et al. *J Clin Oncol* 2017;35(suppl) [abstract 11078]. 4. Ries CH, et al. *Cancer Cell* 2014; 25:846–859. 5. Tap WD, et al *N Engl J Med* 2015;373:428–437. 6. Papadopoulos KP, et al *Clin Cancer Res* 2017;23:5703–5710.

Cabiralizumab ± Nivolumab Demonstrated a Tolerable Safety Profile

- Safety profile of the combination was generally consistent with that of nivolumab^{1,2} and cabiralizumab³ monotherapy
- The most common TRAEs were elevations in creatine kinase and serum liver enzymes (without elevation in bilirubin)
 - These are believed to be secondary to cabiralizumab's depletion of Kupffer cells (macrophages) and were reported with other CSF-1R-targeting agents⁴⁻⁶
 - Isolated enzyme elevations were not associated with other clinical sequelae

FPA008-003

	Cabiralizumab monotherapy (n = 24)		Cabiralizumab + nivolumab (n = 205)	
	Any grade, n (%)	Grade 3–4, n (%)	Any grade, n (%)	Grade 3–4, n (%)
Any TRAE	15 (63)	13 (54)	184 (90)	100 (49)
AEs leading to discontinuation	3 (13)	2 (8)	15 (7)	10 (5)
Clinical TRAEs (≥ 15% of pts treated with combination)				
Periorbital edema	5 (21)	0	84 (41)	1 (<1)
Fatigue	7 (29)	0	74 (36)	11 (5)
Rash	1 (4)	1 (4)	38 (19)	8 (4)
Pruritus	2 (8)	0	34 (17)	2 (1)
Nausea	3 (13)	0	30 (15)	0
Treatment-related laboratory abnormalities of interest				
Serum enzyme elevations ^a	10 (42)	9 (38)	103 (50)	40 (20)
Pancreatic enzyme elevations ^b	3 (13)	2 (8)	42 (20)	24 (12)
Treatment-related deaths		0	3 (1	.5) ^c

^aIncludes AE terms indicative of elevated CPK, AST, ALT, and LDH. ^bIncludes AE terms indicative of elevated amylase and lipase. ^cIncludes pneumonitis in a patient with thyroid cancer (cabiralizumab 1 mg/kg + nivolumab 3 mg/kg), and respiratory distress (n = 1, cabiralizumab 4 mg/kg + nivolumab) and acute respiratory distress (n = 1, cabiralizumab) in 2 patients with lung cancer. ALT = alanine aminotransferase; AST = aspartate aminotransferase; CPK = creatine phosphokinase; LDH = lactate dehydrogenase; TRAE, treatment-related adverse event

1. Brahmer J, et al. *N Engl J Med* 2015;373:123–135. 2. Ferris RL, et al. *N Engl J Med* 2016;375:1856–1867. 3. Sankhala K, et al. *J Clin Oncol* 2017;35(suppl) [abstract 11078]. 4. Ries CH, et al. *Cancer Cell* 2014; 25:846–859. 5. Tap WD, et al *N Engl J Med* 2015;373:428–437. 6. Papadopoulos KP, et al *Clin Cancer Res* 2017;23:5703–5710.

Rationale for Targeting CSF-1R in Pancreatic Cancer

- Pancreatic cancer is associated with high TAM infiltration and poor prognosis^{1,2}
- It typically presents as metastatic disease with a 1-year survival rate of 17%-23%³ and a 5-year survival rate of 1%-3%^{4,5}
- Approximately 95%-99% of patients have microsatellite stable (MSS) pancreatic cancer,⁶⁻⁸ lack response to anti–PD-1/L1 therapy,^{5,9} and are in need of new treatment options
- Combination of cabiralizumab and nivolumab may benefit patients with pancreatic cancer by simultaneous reduction of TAMs and inhibition of PD-1 signaling

1. Hu H, et al. *Tumour Biol* 2016;37:8657–8664. 2. Kurahara, et al. *J Surg Res* 2011;167:e211–e219. 3. Von Hoff DD, et al. *N Engl J Med* 2013;369:1691-1703. 4. American Cancer Society. Pancreatic cancer. https://www.cancer.org/cancer/pancreatic-cancer.html. Accessed October 20, 2017. 5. Foley K, et al. *Cancer Lett* 2016;381;244–251. 6. Goggins M, et al. *Am J Pathol* 1998;1501–1507. 7. Luttges J, et al. *Mod Pathol* 2003;16:537–542. 8. Laghi L, et al. *PLOS One* 2012;7:e46002. 9. Brahmer JR, et al. *N Engl J Med* 2012;366;2455–2465.

Pancreatic Cancer Cohort Baseline Demographics and Safety

 Patient demographics and the safety profile in the pancreatic cohort was similar to those in all patients treated with cabiralizumab + nivolumab

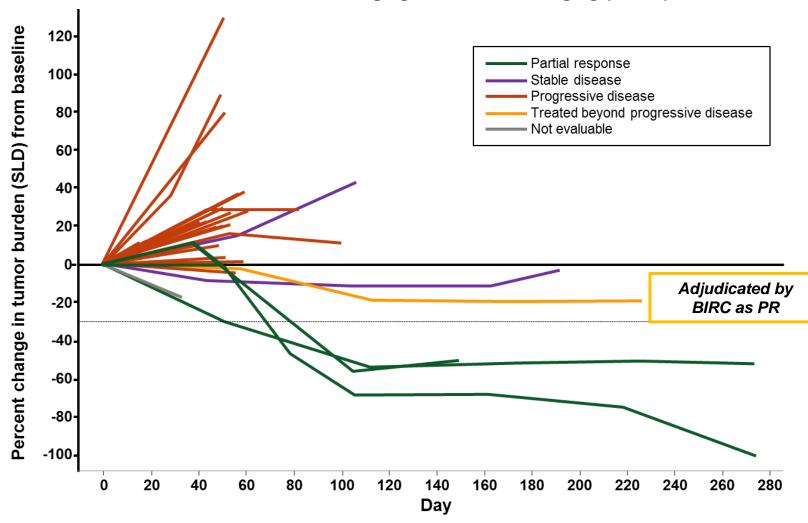
Reading demographics and prior	Cabiralizumab 4 mg/kg + nivolumab 3 mg/kg		
Baseline demographics and prior therapy	Pancreatic cancer (n = 33) ^a		
Median age (range), years < 65 years, n (%)	64 (37–85) 17 (52)		
Male, n (%)	17 (52)		
ECOG performance status, n (%) 0 1 2	13 (39) 19 (58) 1 (3)		
No. of prior regimens, n (%) 0 1 2 ≥ 3	1 (3) ^b 3 (9) 14 (42) 15 (45)		
No. of prior regimens for metastatic disease, n (%) 0 1 2 ≥ 3	7 (21) 4 (12) 12 (36) 10 (30)		

^aOf 33 patients, 31 were response evaluable. ^bPatient was ineligible or refused standard therapy.

Pancreatic Cancer Cohort Baseline Demographics and Safety

 Patient demographics and the safety profile in the pancreatic cohort was similar to those in all patients treated with cabiralizumab + nivolumab

Pasalina domographics and prior	Cabiralizumab 4 mg/kg + nivolumab 3 mg/kg		
Baseline demographics and prior therapy	Pancreatic cancer (n = 33) ^a		
Median age (range), years < 65 years, n (%)	64 (37–85) 17 (52)		
Male, n (%)	17 (52)		
ECOG performance status, n (%) 0 1 2	13 (39) 19 (58) 1 (3)		
No. of prior regimens, n (%) 0 1 2 ≥ 3	1 (3) ^b 3 (9) 14 (42) 15 (45)		
No. of prior regimens for metastatic disease, n (%) 0 1 2 ≥ 3	7 (21) 4 (12) 12 (36) 10 (30)		


	Cabiralizumab 4 mg/kg + nivolumab 3 mg/kg		
	Pancreatic cancer (n = 33)ª		
Safety summary	Any grade n (%)	Grade 3/4 n (%)	
Any TRAE	31 (94)	20 (61)	
AEs leading to discontinuation	3 (9)	3 (9)	
Clinical TRAEs in ≥ 15% of patients Fatigue Periorbital edema Rash Vomiting Hyponatremia Diarrhea Rash maculopapular Treatment-related laboratory abnormalities of interest Serum enzyme elevations ^c Pancreatic enzyme elevations ^d	14 (42) 10 (30) 7 (21) 7 (21) 6 (18) 5 (15) 5 (15) 5 (15) 17 (52) 2 (6)	1 (3) 0 0 3 (9) 1 (3) 3 (9) 11 (33) 1 (3)	
Treatment-related deaths		0	

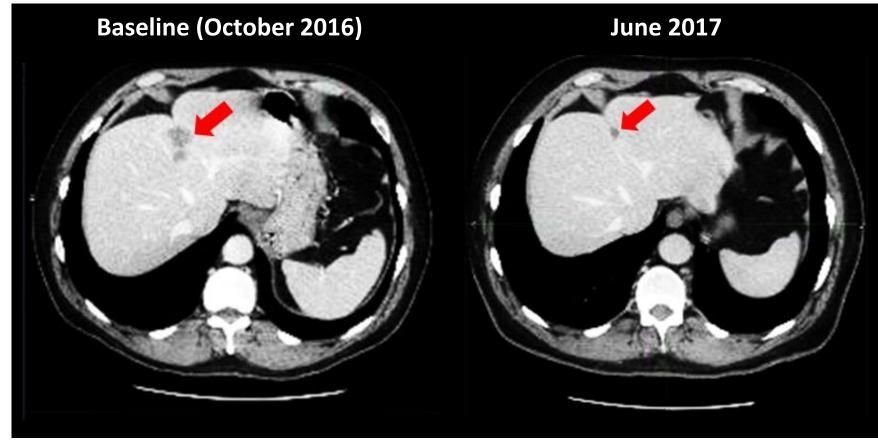
14

^aOf 33 patients, 31 were response evaluable. ^bPatient was ineligible or refused standard therapy. ^cIncludes AE terms indicative of elevated CPK, AST, ALT, and LDH. ^dIncludes AE terms indicative of elevated amylase and lipase

Deep and Durable Responses Observed in Patients With Pancreatic Cancer

Best change in tumor burden over time in efficacy-evaluable patients treated with cabiralizumab 4 mg/kg + nivolumab 3 mg/kg (n = 31)^a

 In this heavily pretreated population, durable clinical benefit was observed in 5 patients (16%)

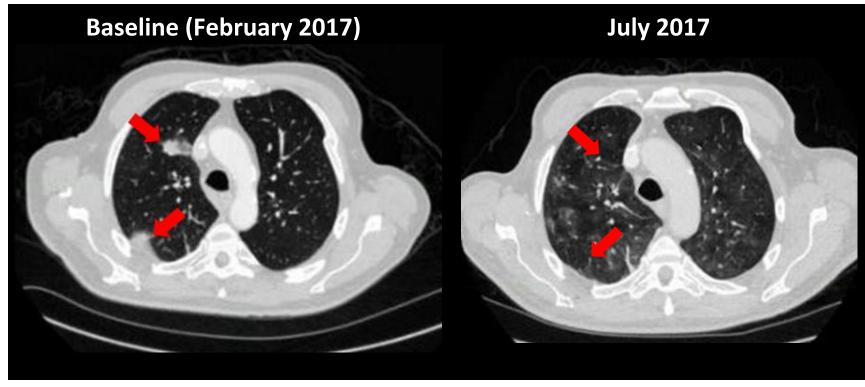

Confirmed ORR = 10% (Updated confirmed ORR = 13%)

Duration of treatment for responders = 275+, 168+, 258, and 247+ days

- All 4 confirmed responses were observed in patients with MSS disease, who historically have not shown benefit with anti–PD-1/L1 therapy^{1,2}
- Responses were accompanied by steep declines in levels of the pancreatic tumor marker CA19-9 over baseline

^aPlot shows 31 efficacy-evaluable patients; 2 patients discontinued treatment early due to AEs before disease evaluation. BIRC = blinded independent review committee; ORR = objective response rate; PR = partial response; SLD = sum of longest diameters 1. Overman M et al. *Ann Oncol.* 2016;27:149-206 [abstract 479P]. 2. Le DT, et al. *N Engl J Med* 2015;372;2509–2520.

Durable Response in the Liver of a Heavily Pretreated Patient With MSS Pancreatic Cancer



Images provided by James Lee from the University of Pittsburgh Cancer Institute.

FPA008-003

- 58-year-old male patient who received 3 prior chemotherapy regimens
 - Neoadjuvant FOLFIRINOX
 - Gemcitabine + nabpaclitaxel
 - 5-FU + leucovorin + liposomal irinotecan
- Patient achieved a partial response with a best change in tumor burden of -52%
 - CA19-9 levels declined by 99% from baseline
 - Response is ongoing

Durable Response in the Lung of a Heavily Pretreated Patient With MSS Pancreatic Cancer

Images provided by Jennifer Johnson from Thomas Jefferson University Hospital.

FPA008-003

- 63-year-old male patient who received 4 prior chemotherapy regimens
 - Adjuvant FOLFIRINOX
 - FOLFIRINOX
 - Capecitabine
 - Gemcitabine + nabpaclitaxel
- Patient achieved a partial response with a best change in tumor burden of -50%
 - CA19-9 levels declined by 96% from baseline
 - Response is ongoing

Conclusions

- Cabiralizumab is a new immunotherapeutic agent that targets TAMs in the immunosuppressive microenvironment
- Cabiralizumab with or without nivolumab demonstrated:
 - Tolerable safety profile that is comparable to either monotherapy
 - Dose-dependent reduction of circulating CD14+CD16++ nonclassical monocytes, reaching maximum at 4 mg/kg Q2W when clearance approaches linear dose range
- Preliminary evidence of durable clinical benefit with cabiralizumab plus nivolumab was observed in heavily pretreated patients with advanced MSS pancreatic cancer
 - Further cohort expansion is ongoing as well as additional biomarker analyses
- These data support further study of cabiralizumab plus nivolumab ± chemotherapy in pancreatic cancer (NCT03336216)

Acknowledgments

- The patients and families who made this trial possible
- The clinical study teams who participated in this trial
- Ago Ahene (FivePrime Therapeutics) for immunogenicity analyses; David Leung (Bristol-Myers Squibb) for assistance with imaging; Urvi Aras (Bristol-Myers Squibb) for review and scientific input
- FivePrime Therapeutics, Inc. (South San Francisco, CA), Bristol-Myers Squibb (Princeton, NJ), and ONO Pharmaceutical Company, Ltd. (Osaka, Japan)
- All authors contributed to and approved the presentation; writing and editorial assistance was
 provided by Jillian Brechbiel of Chrysalis Medical Communications, Inc, funded by Bristol-Myers
 Squibb

