Grade 4 Thrombocytopenia During Treatment with High-Dose IL-2 (HD IL-2) is a Predictor of Response in Melanoma but Not in Renal Cell Cancer.

Timothy E. Bael, M.D. Bercedis L. Peterson, Ph.D. Karima Rasheed, MHS, PA-C Monica Thoreson, RN, BSN Jared A. Gollob, M.D.

Department of Hematology/Oncology Duke University Medical Center

High dose IL-2 is the only therapy demonstrated to provide long term remission in Melanoma and Renal Cell Cancer.

Responses are seen in a minority of patients but can be durable.

Significant toxicity and high cost.

We observed severe thrombocytopenia in patients with melanoma who responded to IL-2.

Prompted us to ask the question: does severe thrombocytopenia predict response to IL-2 in our patient population?

Multiple reviews evaluating predictors of response to IL-2.

Most published data generated from patients treated at the NCI between 1985 and 1999.

Patient Characteristics Site of Disease Performance Status <u>Treatment Parameters</u> Rebound Lymphocytosis Vitiligo in Melanoma Hypothyroidism

Reviews that have looked at change in platelet counts have had mixed results.

Two studies demonstrated possible correlation.
 Phan GQ, et al. J Clin Oncol. 2001;19:3477.
 Platelet nadir lower in responders, p = 0.053.
 Royal RE, et al. Cancer J Sci Am. 1996;2:91
 Lower platelet nadir in responders with p = 0.004 in RCC and p = 0.08 in melanoma patients.

Other authors looked for but did not find correlation.
– Rosenberg SA, et al. Ann Surg. 1998;228:307.

– MacFarlane MP, et al. Cancer. 1995;75:1030.



44 patients with metastatic melanoma or renal cell cancer treated at Duke University Medical Center between October of 2002 and August of 2004.

Treated with standard intravenous bolus high dose IL-2 regimen:

 600,000 IU/kg every 8 hours for up to 14 doses during weeks 1 and 3 of 12 week course.

Response and progression defined by RECIST criteria.

#### Patient Characteristics (N = 44)

|                                 | Number (%) |      |
|---------------------------------|------------|------|
| Disease                         |            |      |
| Renal Cell Cancer               | 19         | (43) |
| Melanoma                        | 25         | (57) |
| Sex                             |            |      |
| Male                            | 32         | (73) |
| Female                          | 12         | (27) |
| Age                             |            |      |
| Mean                            | 52         |      |
| Range                           | 24 to 72   |      |
| Number of Sites of Metastasis   |            |      |
| Mean                            | 2          |      |
| Range                           | 1 to 5     |      |
| ECOG                            |            |      |
| 0                               | 38         | (86) |
| 1                               | 6          | (14) |
| Prior Therapy                   |            |      |
| Adjuvant Therapy                | 2          | (5)  |
| Chemotherapy or Biochemotherapy | 5          | (11) |
| Radiotherapy                    | 2          | (5)  |
| Stage - Melanoma                |            |      |
| M1a                             | 6          | (24) |
| M1b or M1c                      | 19         | (76) |

#### Patient Characteristics Versus Response

|                                 | Patients | Responders (%) | p value |
|---------------------------------|----------|----------------|---------|
| Disease                         |          |                |         |
| Renal Cell Cancer               | 19       | 5 (26)         | 0.9     |
| Melanoma                        | 25       | 7 (26)         |         |
| Sex                             |          |                |         |
| Male                            | 32       | 7 (22)         | 0.19    |
| Female                          | 12       | 5 (42)         |         |
| ECOG                            |          |                |         |
| 0                               | 38       | 12 (32)        | 0.11    |
| 1                               | 6        | 0 (0)          |         |
| Prior Therapy                   |          |                |         |
| None                            | 38       | 9 (24)         | 0.18    |
| Chemotherapy or Biochemotherapy | 5        | 3 (60)         |         |
| Radiotherapy                    | 2        | 0 (0)          |         |
| Stage - Melanoma                |          |                |         |
| M1a                             | 6        | 3 (50)         | 0.169   |
| M1b or M1c                      | 19       | 4 (21)         |         |
|                                 | Outcome  | Mean           |         |
| Age                             | R *      | 57             | 0.15    |
|                                 | NR       | 51             |         |
| Number of Sites of Metastasis   | R        | 1.5            | 0.11    |
|                                 | NR       | 2.1            |         |
| * D. Deenendere                 |          |                |         |

\* R = Responders

NR = Non Responders

#### Treatment Parameters Versus Response All Patients (N=44)

|                                    | Outcome | Mean | p value |
|------------------------------------|---------|------|---------|
| Number of Doses in Cycle # 1       | R *     | 22.7 | 0.12    |
|                                    | NR      | 20.6 |         |
| Peak Lymphocyte Count, Week 1      | R       | 4931 | 0.9     |
|                                    | NR      | 4214 |         |
| Fold Change in Lymphocytes, Week 1 | R       | 3    | 0.98    |
|                                    | NR      | 2.8  |         |
| Platelet Nadir, Week 1             | R       | 47   | 0.0741  |
|                                    | NR      | 70   |         |
| Fold Decrease in Platelets, Week 1 | R       | 8.9  | 0.0041  |
|                                    | NR      | 4.1  |         |
| * R = Responders                   |         |      |         |

NR = Non Responders

#### Platelet Change in Melanoma versus Renal Cell Cancer

|                                    | Outcome | Mean | p value |
|------------------------------------|---------|------|---------|
| Melanoma (N = 25)                  |         |      |         |
| Fold Decrease in Platelets, Week 1 | R*      | 12.4 | 0.004   |
|                                    | NR      | 4.4  |         |
| Platelet Nadir, Week 1             | R       | 28   | 0.0047  |
|                                    | NR      | 67   |         |
| Renal Cell Cancer (N = 19)         |         |      |         |
| Fold Decrease in Platelets, Week 1 | R       | 4.1  | 0.43    |
|                                    | NR      | 3.7  |         |
| Platelet Nadir, Week 1             | R       | 73   |         |
|                                    | NR      | 73   |         |
| * R = Responders                   |         |      |         |
| NP – Non Responders                |         |      |         |

NR = Non Responders

Response Rate and Grade of Thrombocytopenia in Melanoma

|              | Patients | Responders (%) | p value  |
|--------------|----------|----------------|----------|
| Grade 4      | 5        | 5 (100)        | < 0.0001 |
| Grade 1 to 3 | 20       | 2 (10)         |          |
| Grade 3 & 4  | 11       | 6 (55)         | 0.009    |
| Grade 1 & 2  | 14       | 1 (7)          |          |

## **Multivariate Analysis**

Female sex correlated with response and change in platelet count.

For patients with melanoma, accounting for number of doses, stage, age and sex, p = 0.01 for association between response and fold decrease in platelet count.

c-index = 0.89, showing that change in platelet count was a strong predictor of response in our patients with melanoma.

## **Etiology of Correlation**

Why does thrombocytopenia correlate with response to HD IL-2 therapy in melanoma patients?

 Thrombocytopenia may be surrogate marker of non-specific immune activation.
 Platelet consumption via microthrombosis.
 Proinflammatory cytokine-induced activation of reticuloendothelial system.

## **Etiology of Correlation**

Platelet activation may play a direct role in antitumor response.

Through increased platelet aggregation.
 Selective expression of endothelial adhesion molecules on tumor microvasculature.
 Formation of microthrombi in tumor bed.
 Release of CD40L by activated platelets
 Activates plasmacytoid dendritic cells.
 Facilitates B cell presentation of melanoma antigens.

# **Etiology of Correlation**

Thrombocytopenia may mark the development of a specific immune response.

- Melanoma cells and platelets share key antigens.
   glycoprotein IIb/IIIa
  - ■CD63
  - ■Vitronectin receptor  $a_v \beta_3$

IL-2 may induce production of antibodies to these antigens.

- Transient ITP as an autoimmune phenomenon associated with response.
- Antiplatelet antibodies cross-reactive with tumor

## Conclusions

Fold decrease in platelet count and grade 4 thrombocytopenia after week one of HD IL-2 is strong predictor of response for patients with melanoma in this sample.

Further studies will be needed to determine mechanism of thrombocytopenia and its clinical relevance.