

Immunotherapy for the Treatment of Genitourinary Malignancies Elizabeth R. Kessler, MD Assistant Professor University of Colorado Anschutz Medical Campus

Society for Immunotherapy of Cancer

Disclosures

- Astellas pharmaceuticals, investigator funding
- I will not be discussing non-FDA approved indications during my presentation.

History of Immunotherapy in mRCC

FDA-approved Immunotherapies for mRCC

Drug	Approved	Indication	Dose
High dose Interluekin-2	1992	Metastatic RCC	600,000 International Units/kg (0.037 mg/kg) IV q8hr infused over 15 minutes for a maximum 14 doses, THEN 9 days of rest, followed by a maximum of 14 more doses (1 course)*
Interferon-a (with bevacizumab)	2009	Clear cell RCC***	9 MIU s.c. three times a week
Nivolumab	2015	Clear cell RCC Refractory to prior VEGF Targeted therapy	3mg/kg 240mg IV q 2 week or 480mg IV q 4 wks
Nivolumab +ipilimumab	2018	Clear cell RCC, treatment naïve	3mg/kg nivo plus 1mg/kg ipi q3 wks x 4 doses then nivo maintenance at flat dosing

*Retreatment: Evaluate after 4 weeks, advisable only if tumor shrinkage and no retreatment contraindications (see package insert for details)

High Dose IL-2 in mRCC

- 20 year analysis of 259 patients
- ORR = 20%
 - 9% CR (n = 23)
 - 12% PR (n = 30)
- Median duration of response = 15.5 months
- Median OS = 19 months

Second-Line Nivolumab in mRCC

- CheckMate 025 Phase III trial
- Nivolumab = anti-PD-1 antibody
- Metastatic, clear-cell disease
- One or two previous antiangiogenic treatments
- Nivolumab (3 mg/kg IV Q2W) vs everolimus (10 mg daily)

Society for Immunotherapy of Cancel

Second-Line Nivolumab in mRCC PD-L1 subgroups

<u>PD-L1 ≥ 1%</u>

<u>PD-L1 < 1%</u>

Association of Community Concer Center

Society for Immunotherapy of Cancel

First-line Nivolumab + Ipilimumab in mRCC

Nivolumab = anti-PD-1 antibody

Ipilimumab = anti-CTLA-4 antibody

First-line Nivolumab + Ipilimumab in mRCC

ACCC

First-line Nivolumab + Ipilimumab in mRCC PD-L1 Subgroups

In Development: First-line Atezolizumab + Bevacizumab in PD-L1+ mRCC

In Development: First-line Checkpoint Inhibitors + Axitinib in mRCC

JAVELIN Renal 101

- KEYNOTE-426
 - Pembrolizumab + axitinib in mRCC
 - Positive for OS and PFS (10/18/2018)

In Development: First-line Pembrolizumab in mRCC KEYNOTE - 427

	N = 110
Confirmed ORR, % (95% CI)	38 (29 – 48)
Confirmed BOR, n (%)	
CR	3 (3)
PR	39 (35)
SD	35 (32)
PD	31 (28)
No assessment	2 (2)

Donskov et al. ESMO 2018

sitc

Society for Immunotherapy of Cancel

Association of Community Cancer Center

Society for Immunotherapy of Cancer

ADVANCES IN

IMMUNOTHERAPY¹

Approved Checkpoint Inhibitors for mUC Platinum Refractory

Drug/Trial	Phase	No. of	ORR	PFS	OS	Duration	Grade 3/4 AE	Maximal
name		patients				of	(treatment	duration of
						response	related	treatment
							deaths)	
CISPLATIN REFRA	ACTORY		_		_			
Atezolizumab	н	310	16%	2.1	7.9	22.1 mo	18% (0	NR
IMvigor210			(6%	mo	mo		deaths)	
cohort 2			CR)		(1yr			
					29%)			
Atezolizumab	Ш	931	13%	NR	8.6	21.7 mo	20%	NR
IMvigor211					mo			
Pembrolizumab	Ш	542	21%	2.1	10.3	NR	14% (4	2 years
KEYNOTE-045				mo	mo		deaths)	
Nivolumab	Ш	265	19.6%	2 mo	8.7	NR	18% (3	NR
CheckMate275			(2%		mo		deaths)	
			CR)					
Avelumab	lb	242	17%	6.6	6.5	NR	10% (1 death)	NR
JAVELIN			(6%	weeks	mo			
			CR)					
Durvalumab	1/11	191	17.8%	1.5	18.2	NR	7% (2 deaths)	1 year
			(4%	mo	mo			
			CR)					

Anti-PD-L1 Antibodies

- 1) Atezolizumab
- 2) Avelumab
- 3) Durvalumab

Anti-PD-1 Antibodies

- 1) Nivolumab
- 2) Pembrolizumab

In development: Combinations

- 1) IO + IO
- 2) IO + Chemotherapy

CISPLATIN INELIGIBLE

11

119

23%

Atezolizumab

Approved Checkpoint Inhibitors for mUC Cisplatin Ineligible

Anti-P	D-L1	Antib	odies

1) Atezolizumab

•

PD-L1 stained tumorinfiltrating immune cells [IC] covering ≥5% of the tumor area

Anti-PD-1 Antibodies

- 1) Pembrolizumab
 - PD-L1 CPS ≥ 10

In development: Combinations

- 1) IO + IO
- 2) IO + Chemotherapy

		CR)		1yr 57%			
Pembrolizumab II KEYNOTE-052	370	29% (7% CR)	6mo 30%	6 mo 67%	NR	19% (1 death)	2 years

2.7

15.9

NR

16% (1 death) NR

Tumor Mutational Burden (TMB) May Signal Responses with PD-1 Blockade Atezolizumab in mUC

The Spectrum of Prostate Cancer

Sipuleucel-T in mCRPC

Drake et al. Curr Opin Urol 2010

Limited efficacy of Checkpoint Inhibitors in mCRPC No FDA-approved CIs for mCRPC

- Ex. KEYNOTE-199 (Pembrolizumab)
- Cohort 1 (PD-L1+) Cohort 2 (PD-L1–) Cohort 3 (Any PD-L1; Bone

- Pembrolizumab is approved for all
 Microsatellite Instability-High
 (MSI-H) solid tumors
- MSI-H incidence is low in PC
 - Localized PC ~2%
 - Autopsy series of mCRPC ~12%
- MSI testing may offer pembrolizumab as an option

DeBono et al. ASCO 2018

Future Combinations in mCRPC to Engage Immune System

- Hormonal therapy
- Radiation
- Radium-223
- PARP inhibitors
- Chemotherapy
- New targets

- Similar

incidence

overall

irAEs with Immune Checkpoint Inhibitors in GU Cancers

Meta-analysis of 8 studies

Adverse event	Incidence, any grade (GU only trials) (%)	Incidence, grades 3– 5 (GU only trials) (%)	Incidence any grade (non-GU clinical trials) (%)	Incidence, grades 3– 5 (non-GU clinical trials) (%)
Hypothyroid/ thyroiditis	0.8–9	0–0.6	3.9–12	0-0.1
Diabetes/DKA	0–1.5	0–0.7	0.8–0.8	0.4–0.7
LFT changes/ hepatitis	1.5–5.4	1–3.8	0.3–3.4	0.3–2.7
Pneumonitis	2–4.4	0–2	1.8–3.5	0.25–1.9
Encephalitis	NR	NR	0.2–0.8	0.0–0.2
Colitis/diarrhea	1–10	1–10	2.4–4.1	1.0–2.5
Hypophysitis	0–0.5	0–0.2	0.2–0.9	0.2–0.4
Renal Dysfunction/ nephritis	0.3–1.6	0–1.6	0.3–4.9	0.0–0.5
Myositis	0.8–5	0–0.8	NR	NR

Maughan et al. Front Oncol 2017

Immune-related Adverse Events

Grade of immune-related AE (CTCAE/equivalent)	Corticosteroid management	Additional notes
1	Corticosteroids not usually indicated	Continue immunotherapy
2	 If indicated, start oral prednisone 0.5-1 mg/kg/day if patient can take oral medication. If IV required, start methylprednisolone 0.5-1 mg/kg/day IV If no improvement in 2–3 days, increase corticosteroid dose to 2 mg/kg/day Once improved to ≤grade 1 AE, start 4–6 week steroid taper 	 Hold immunotherapy during corticosteroid use Continue immunotherapy once resolved to ≤grade 1 and off corticosteroids Start proton pump inhibitor for GI prophylaxis
3	 Start prednisone 1-2 mg/kg/day (or equivalent dose of methylprednisolone) If no improvement in 2–3 days, add additional/alternative immune suppressant Once improved to ≤ grade 1, start 4–6-week steroid taper Provide supportive treatment as needed 	 Hold immunotherapy; if symptoms do not improve in 4–6 weeks, discontinue immunotherapy Consider intravenous corticosteroids Start proton pump inhibitor for GI prophylaxis Add PCP prophylaxis if more than 3 weeks of immunosuppression expected (>30 mg prednisone or equivalent/day)
4	 Start prednisone 1-2 mg/kg/day (or equivalent dose of methylprednisolone) If no improvement in 2–3 days, add additional/alternative immune suppressant, e.g., infliximab Provide supportive care as needed 	 Discontinue immunotherapy Continue intravenous corticosteroids Start proton pump inhibitor for GI prophylaxis Add PCP prophylaxis if more than 3 weeks of immunosuppression expected (>30 mg prednisone or equivalent/day)

Table 2 Caparal suidance for carticostaraid management of immune valated adverse super-

Puzanov Journal for ImmunoTherapy of Cancer 2017

Additional Resources

Rini et al. Journal for ImmunoTherapy of Cancer (2016) 4:81 Journal for ImmunoTherapy DOI 10.1186/s40425-016-0180-7 of Cancer **POSITION ARTICLE AND GUIDELINES** Open Access CrossMark Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of renal cell carcinoma Brian I. Rini¹, David F. McDermott², Hans Hammers³, William Bro⁴, Ronald M. Bukowski⁵, Bernard Faba⁶, Jo Faba⁶, Robert A. Figlin⁷, Thomas Hutson⁸, Eric Jonasch⁹, Richard W. Joseph¹⁰, Bradley C. Leibovich¹¹, Thomas Olencki¹², Allan J. Pantuck¹³, David I. Quinn¹⁴, Virginia Seery², Martin H. Voss¹⁵, Christopher G. Wood⁹, Laura S. Wood¹ and Michael B. Atkins^{16*} Kamat et al. Journal for ImmunoTherapy of Cancer (2017) 5:68 Journal for ImmunoTherapy DOI 10.1186/s40425-017-0271-0 of Cancer **POSITION ARTICLE AND GUIDELINES** Open Access

📕 CrossMark

Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of bladder carcinoma

Ashish M. Kamat^{1*}, Joaquim Bellmunt², Matthew D. Galsky³, Badrinath R. Konety⁴, Donald L. Lamm⁵, David Langham⁶, Cheryl T. Lee⁷, Matthew L. Milowsky⁸, Michael A. O'Donnell⁹, Peter H. O'Donnell¹⁰, Daniel P. Petrylak¹¹, Padmanee Sharma¹², Ella C. Skinner¹³, Guru Sonpavde¹⁴, John A. Taylor III¹⁵, Prasanth Abraham¹⁶ and Jonathan E. Rosenberg¹⁷ McNeel et al. Journal for ImmunoTherapy of Cancer (2016) 4:92 DOI 10.1186/s40425-016-0198-x

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

(CrossMark

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of prostate carcinoma

Douglas G. McNeel¹, Neil H. Bander², Tomasz M. Beer³, Charles G. Drake⁴, Lawrence Fong⁵, Stacey Harrelson⁶, Philip W. Kantoff⁷, Ravi A. Madan⁸, William K. Oh⁹, David J. Peace¹⁰, Daniel P. Petrylak¹¹, Hank Porterfield¹², Oliver Sartor¹³, Neal D. Shore⁶, Susan F. Slovin⁷, Mark N. Stein¹⁴, Johannes Vieweg¹⁵ and James L. Gulley^{16*}

Case Study 1

- 60 yo F cyclist who noted increasing fatigue after a hysterectomy. She was quite anemic pre and post-operatively and was started on oral irone yet continued to feel weak and to lose weight. An abdominal ultrasound was ordered to evaluate her weight loss and a 10 cm renal mass was noted. She underwent a left radical nephrectomy revealing a T3aNxMx Clear Cell RCC, Fuhrman grade ³/₄.
- Imaging at the time revealed a 1.8 cm lower lobe pulmonary nodule.
- Follow up imaging 2 months post operatively revealed multiple new pulmonary lesions, bilaterally which were biopsy proven RCC.
- She began sunitinib with improvement in fatigue, anemia, and appetite. Her restaging imaging at 3 months revealed new liver lesions and enlarging pulmonary lesions.

- Second line nivolumab was chosen
- Tolerated well with some mild GI symptoms.
- Pulmonary nodules resolved
- Liver lesions appeared less active
- Remained on therapy for 15 months and then developed a new small liver lesion in the setting of otherwise stable PR

Case Study 1

- Underwent Radiofrequency ablation to the solitary new liver lesion with good results.
- Follow up imaging revealed a good response with scarring at the RFA site and virtual resolution of her additional sites of disease
- Treatment holiday after 2 years of nivolumab and stable after 13 months of follow up

Case Study 1

Discussion topics

- focal therapy of oligometastatic disease or focal progression
- treatment holidays after prolonged response to checkpoint inhibition

Case study 2

73 yo F PMHx of COPD, tobacco use, uncontrolled diabetes who lives with family members in Colorado and Texas presented with intermittent hematuria underwent cystoscopy and TURBT revealing a large friable bladder tumor. Pathology was T2 high grade urothelial carcinoma

Imaging at the time revealed a mass with perivesicular stranding, non avid mildly enlarged lymph nodes.

ECOG is 1; no neuropathy, GFR is

She underwent 4 cycles of neoadjuvant cisplatin, gemcitabine and 4 weeks postchemotherapy had a cystectomy, lymph node dissection and ileal conduit creation. ypT0N0 (0/15 nodes)

Case study 2

She was on surveillance and approximately 9 months post-operatively her images revealed a 3 cm soft tissue nodule along the right pelvic sidewall which was PET avid, as well as intensely avid, non-enlarged right common iliac node in the mid-upper pelvis

- Initiated therapy with atezolizumab given every 21 days
- Cycle 6 she was clinically stable. Scans with mixed response of mildly enlarging
 pelvic sidewall node and a new PET avid node in the pre-aortic region of 1.5 mm in
 short axis. Therapy continued

Case study 2

By cycle 9 she had increasing difficulties ambulating without a prop and general arthralgia/myalgia. Complaining of hip and shoulder girdle stiffness, and weight loss

ESR 69 CRP 87; CPK <10; LFTs normal; xray with some mild healed erosions in the carpometacarpal articulations

Received 1mg/kg steroids with rapid improvement in mobility and markers. Thought to be PMR.

ESR 10 CRP 16 on follow up

Atezolizumab discontinued

Follow up imaging 3 months later with resolution of pelvic mass and RP lymphadenopathy. No new sites of disease

Discussion points

- sequencing of immunotherapy
- pseudoprogression
- inflammatory toxicities
- continued response

