Therapeutic Strategies for Human Papillomavirus-Associated Cancers

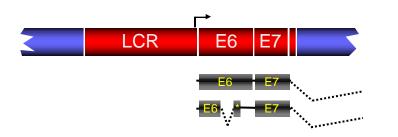
Karl Münger

The Channing Laboratory, Infectious Diseases Division Brigham and Women's Hospital, Boston, MA 02115

kmunger@rics.bwh.harvard.edu

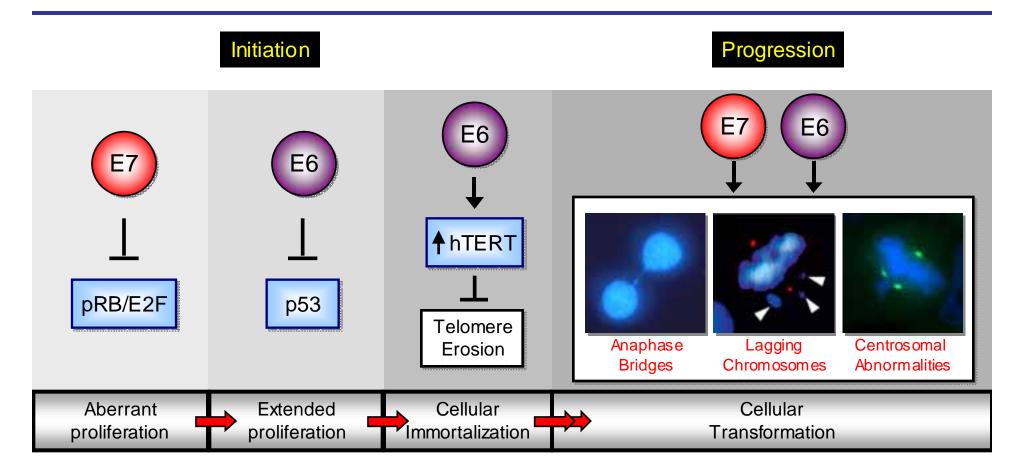
Why consider therapeutic approaches for HPVassociated lesions and cancers?

500,000 new cases/288,000 cervical cancer deaths per year (worldwide) (2nd most common cause of cancer death in women)


> Prophylactic vaccines will only protect from new infections by vaccine HPVs

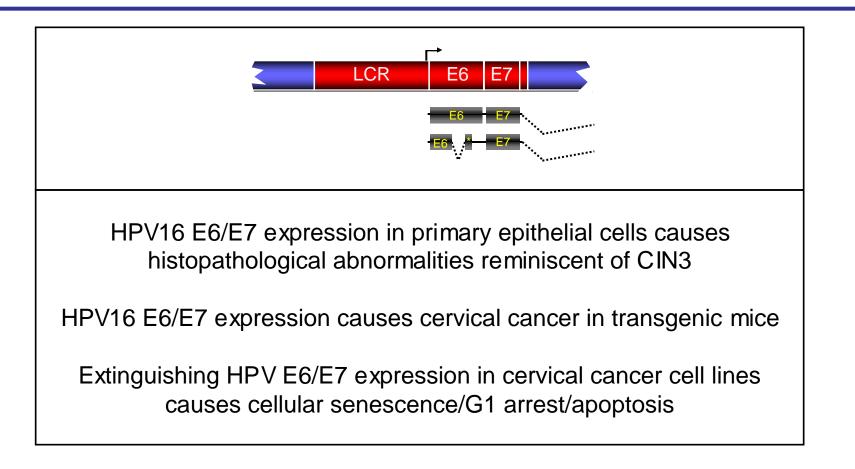
Vaccine implementation has been challenging. (US 2007: 25% of girls ages 13-17, 10% of all females ages 18-26 1.1% of Hispanic women)

Cervical cancer develops decades after the initial HPV infection


It will take decades before such vaccines will result in a measurable decline of HPV-associated cancers

HPV genome integration is a hallmark of malignant progression

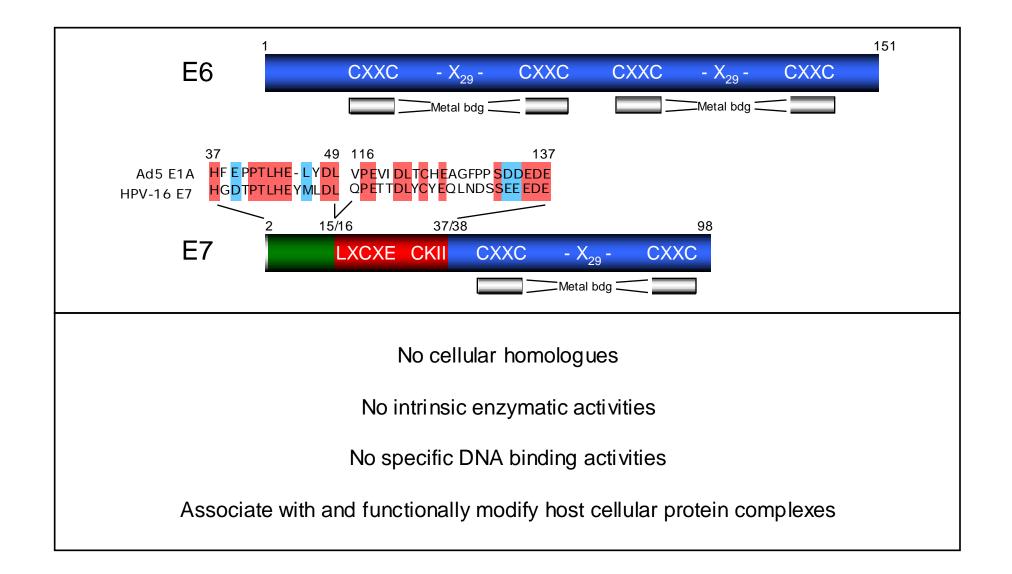
HPV-associated cancers only express two viral proteins, E6 and E7


Mechanisms of HPV-associated carcinogenesis

HPV oncoproteins target cellular signaling pathways that are frequently mutated in human solid tumors:

pRB pathway >80% p53 >60% Telomere maintenance ~100%

Evidence that HPV E6/E7 expression is necessary and sufficient for cervical carcinogenesis



HPV-associated cancers are the only human solid tumors where the carcinogenic agent is known at a molecular level Therapeutic opportunities

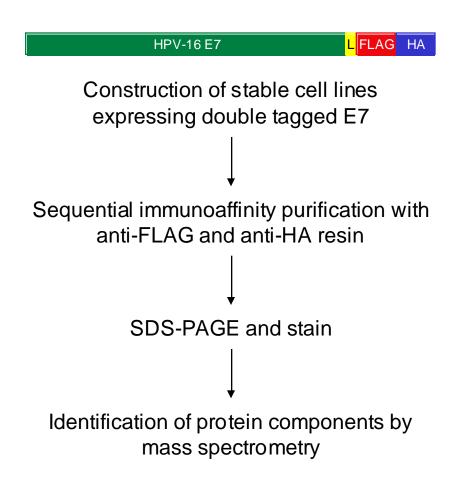
HPV-associated cancers are driven by expression of the E6 and E7 oncoproteins

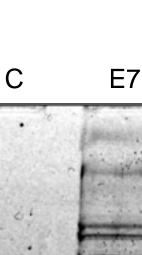
HPV E6 and E7 oncoproteins should be excellent drug targets

HPV E6/E7 Oncoproteins

Therapeutic opportunities

HPV E6 and E7 function through protein/protein interactions (E6/p53; E7/pRB)


Protein/protein interactions are difficult to target by small molecule approaches


Are HPV oncoproteins associated with cellular enzymatic activities that are necessary for their activities?

Does expression of HPV oncoproteins induce perturbations of cellular signal transduction networks that may be harnessed for therapy?

Are HPV oncoproteins associated with cellular enzymatic activities that are necessary for their activities?

Proteomic analysis of HPV16 E7 associated host cellular protein complexes

 250^{-1}

148

98 -

64 -

50 -

36 -

22 -

KyungWon Huh

p600

p600, similar to TBX6L

p600, EDD, CAD, NuMA, IQG-1, p195 ras GTPase activating like protein PIP3, splicing factor 3b subunit 1, p130, pRb, polyubiquitin

p130, pRB, EDR-3, spliceosome-associated protein p130

p107, pRB, matrin-3, CARP

p130, pRB, epithelia1 microtubule assn protein, polyubiquitin, KIAA1949, KIAA1967 (DBC30 homolog), cul2

Cul2, LML-2, 6-PFK, hsp90, KIAA1949, p130, NEDD8, AKA8, pRB, ZYG, polyubiquitin, KIAA1967 (DBC30 homolog)

Cul2, 6-PFK, EIF4B, ZYG, polyubiquitin

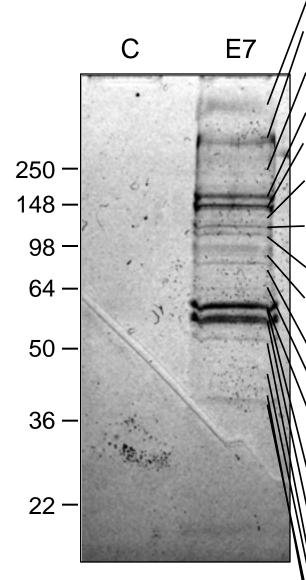
GR-78, dnaK, ems-1, hsc71, hnRNPm, hsp70, skb-1 protein homolog, hsp70.1, PID, protein arginine N-methyl transferase, polyubiquitin

hsp70, hPC2, TAF(II)68, ems-1, fus, polyubiquitin

HDA1, fus, TAF(II)68

Vimentin, tubulin ß, E2F-1, -2, -3, -4, DP-1, hnRNPK, fus, NDR-1, HDAC3 subunit, 3-PGDH, Tcp-1, sequestosome, IL-3 regulated nuclear factor, CoRest, t-complex delta, theta, beta, HD1, hnRNPi

Vimentin, E2F-4, DP-2, Tubulin ß, a, RUV1, 2, hnRNP i, h, glycogen phosphorylase


Cyclin A2, E2F-4, DP-1, Tubulin ß, TR interactor 13, hn RNP f, polycomb ring 1, EIF4a, RBP46

EIF4a-I, cyclin A2, hsdj2, hnRNPg, DP-1, EIF3f, hMBLR, cyclin E2

E2F-3, -4, -5, T34540, Ta-2, actin B, hnRNP-e2, methylosome protein 50, alk phosph

PP1A, EIF3a, BAP-1, cdk2, hnRNP-e1, WD repeat protein

Cdk2, ElF3a, EF1, E2F-6, polyubiquitin, cdc2

KyungWon Huh

p600

p600, similar to TBX6L

p600, EDD, CAD, NuMA, IQG-1, p195 ras GTPase activating like protein PIP3, splicing factor 3b subunit 1, p130, pRb, polyubiquitin

p130, pRB, EDR-3, spliceosome-associated protein p130

p107, pRB, matrin-3, CARP

p130, pRB, epithelial microtubule assn protein, polyubiquitin, KIAA1949, KIAA1967 (DBC30 homolog), cul2

Cul2, LML-2, 6-PFK, hsp90, KIAA1949, p130, NEDD8, AKA8, pRB, ZYG, polyubiquitin, KIAA1967 (DBC30 homolog)

Cul2, 6-PFK, EIF4B, ZYG, polyubiquitin

GR-78, dnaK, ems-1, hsc71, hnRNPm, hsp70, skb-1 protein homolog, hsp70.1, PID, protein arginine N-methyl transferase, polyubiquitin

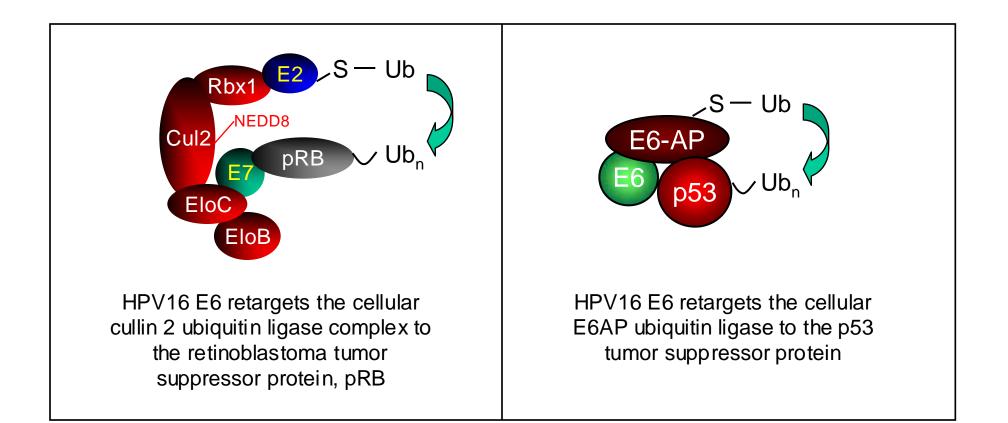
hsp70, hPC2, TAF(II)68, ems-1, fus, polyubiquitin

HDA1, fus, TAF(II)68

Vimentin, tubulin ß, E2F-1, -2, -3, -4, DP-1, hnRNPK, fus, NDR-1, HDAC3 subunit, 3-PGDH, Tcp-1, sequestosome, IL-3 regulated nuclear factor, CoRest, t-complex delta, theta, beta, HD1, hnRNPi

Vimentin, E2F-4, DP-2, Tubulin ß, a, RUV1, 2, hnRNP i, h, glycogen phosphorylase

Cyclin A2, E2F-4, DP-1, Tubulin ß, TR interactor 13, hn RNP f, polycomb ring 1, EIF4a, RBP46


EIF4a-I, cyclin A2, hsdj2, hnRNP g, DP-1, EIF3f, hMBLR, cyclin E2

E2F-3, -4, -5, T34540, Ta-2, actin B, hn RNP-e2, methylosome protein 50, alk phosph

PP1A, EIF3a, BAP-1, cdk2, hnRNP-e1, WD repeat protein

Cdk2, EIF3a, EF1, E2F-6, polyubiquitin, cdc2

HPV E6 and E7 oncoproteins associate with and reprogram cellular enzymes

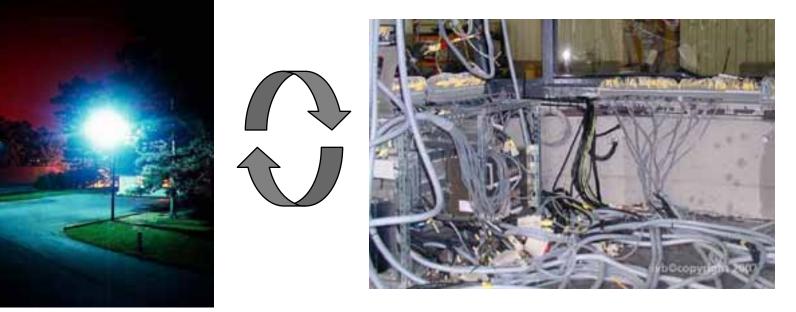
HPV E6 and E7 oncoproteins reprogram cellular ubiquitin ligases to target associated cellular tumor suppressors for degradation

Are HPV-positive cancer lines sensitive to the proteasome inhibitor, Bortezomib?

EC50s:

CaSki (HPV16): ~10-15 nM SiHa (HPV16): ~30-35 nM HeLa (HPV18): ~25 nM

Will test on HPV16 oncogene expressing primary human epithelial cells


Karin Hellner collaboration with Jochen Lorch/Marshall Posner

Identification of therapeutic targets

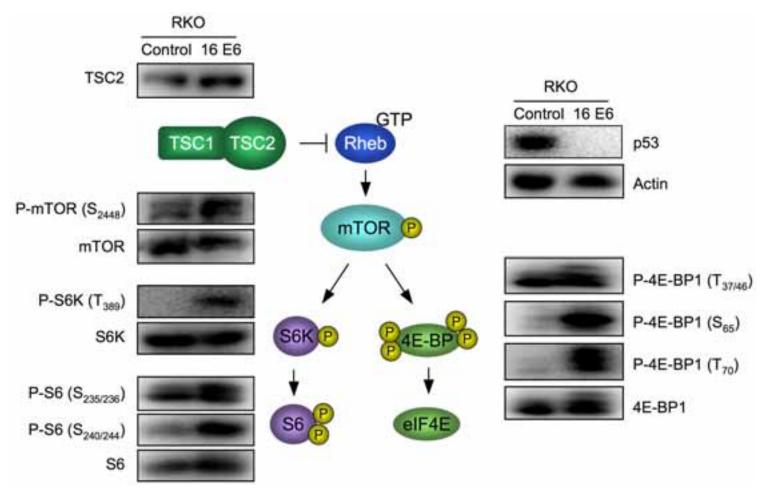
Does expression of HPV oncoproteins induce perturbations of cellular signal transduction networks that may be harnessed for therapy?

"Under the Streetlight" Approach

"Unbiased" approach

"You study what you can see"

"You see what you can study"


Identification of therapeutic targets

"Under the Streetlight" Approach

"You study what you can see"

HPV E6 expression activates mTOR signaling

Jennifer Spangle based on Lu et al, JBC 279: 35664-70, 2004

Are HPV-positive cancer lines susceptible to mTOR inhibitors?

EC50s for RAD001:

CaSki (HPV16): ~15 μM SiHa (HPV16): ~25 μM HeLa (HPV18): ~27 μM

Will test on HPV16 oncogene expressing primary human epithelial cells Will test combination with 2-deoxyglucose

Karin Hellner collaboration with Jochen Lorch/Marshall Posner

Identification of therapeutic targets

"Unbiased" approach

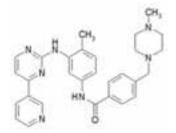
Genetic Screens

Systems Biology

"You see what you can study"

Identification of therapeutic targets

"Unbiased" approach

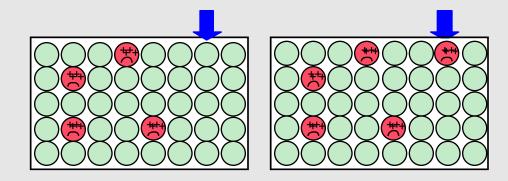

Genetic Screens

"You see what you can study"

Essential kinases for cervical cancers

Precedence: Gleevec[®] inhibits the bcr/abl kinase that is critical for the growth of certain leukemias (CML) that have the Philadelphia translocation

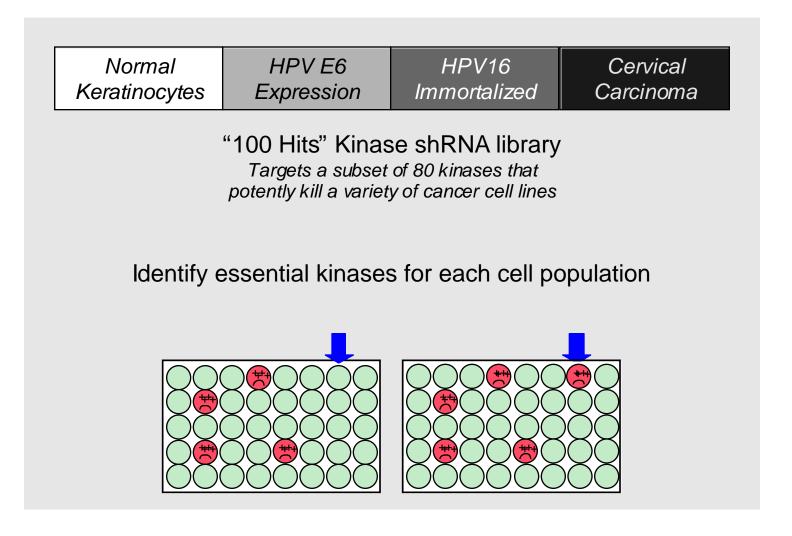
Can we identify a kinase target for a "cervical cancer-specific Gleevec"?



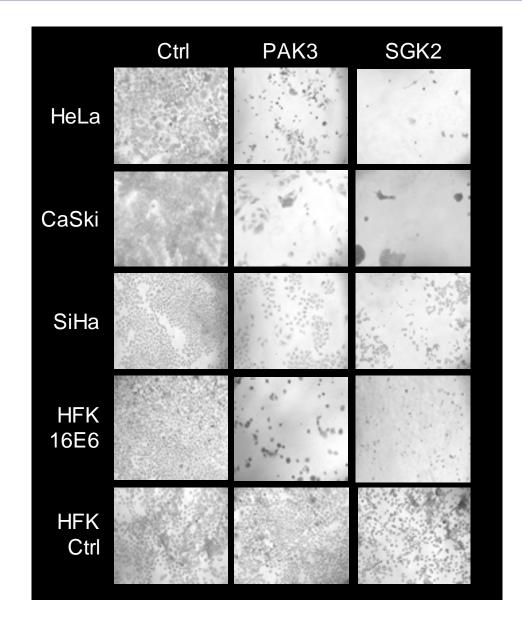
Essential kinases for cervical cancers: Experimental Strategy

Normal Keratinocytes Cervical Carcinoma

"100 Hits" Kinase shRNA library Targets a subset of 80 kinases that potently kill a variety of cancer cell lines

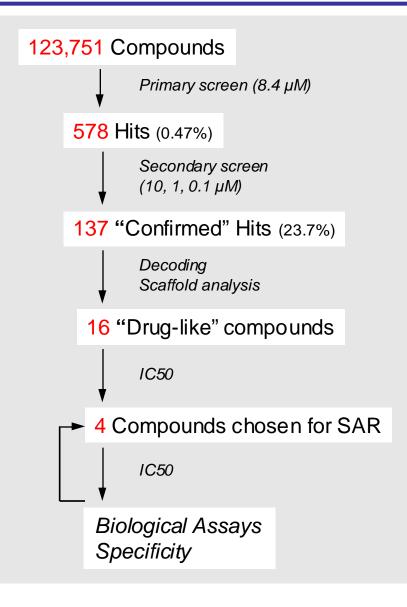

Identify essential kinases for each cell population

Normal Keratinocytes


Cervical Carcinoma ANPb CDK7 EPHB1 HER3 HIPK2 IRR JNK3 KHS1 MELK MYO3B PAK3 PAK6 PCTAIRE1 PDHK2 PITSLRE PLK1 ROS RSK2 SGK2 TSSK

Essential kinases for cervical cancers: Experimental Strategy

Normal Keratinocytes	HPV E6 Expression	HPV16 Immortalized	Cervical Carcinoma
		ANPb	ANPb
		CDK7	CDK7
			EPHB1
		HER3	HER3
		HIPK2	HIPK2
		IRR	IRR
		JNK3	JNK3
			KHS1
			MELK
		МҮОЗВ	MYO3B
	PAK3	PAK3	PAK3
-		PAK6	PAK6
		PCTAIRE1	PCTAIRE1
		PDHK2	PDHK2
		PITSLRE	PITSLRE
		PLK1	PLK1
			ROS
		RSK2	RSK2
	SGK2	SGK2	SGK2
		TSSK2	TSSK


PAK3 and SGK2 become essential upon HPV E6 expression

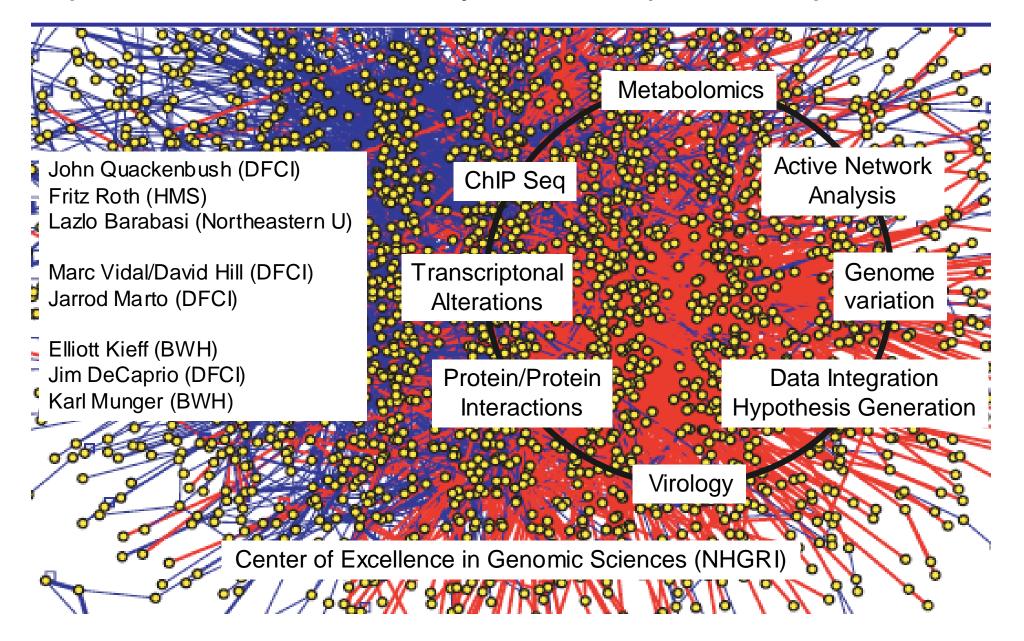
Baldwin, Grueneberg

PAK3 Inhibitor Screen

Collaboration with Greg Cuny/Jun Xian (PCDD)

Karin Hellner

Identification of therapeutic targets


"Unbiased" approach

Systems Biology

"You see what you can study"

An integrative approach to identify cellular network perturbations induced by viral oncoprotein expression

Munger Lab

Alyce Chen Sebastian Darr Miranda Grace Karin Hellner Sergio Ita Molly McLaughlin-Drubin Jennifer Spangle Yueyang Yu

Amy Baldwin (St George's University, Grenada) Kyung Won Huh (LSUHSC, New Orleans, LA) Ed Harlow (HMS) Dorre Grueneberg (HMS) The RNAi Consortium (Broad)

> Marshall Posner (DFCI) Jochen Lorch (DFCI)

Greg Cuny (PCDD) Jun Xian (PCDD)

Marc Vidal (DFCI)

Chris Crum (BWH)

NIH CA 066980 CA 081135 CA 141583 DE 015302 HG 004233

- Virus associates cancers offer unique opportunities for prevention, diagnosis and therapy
- Some mechanistic insights obtained with HPVassociated cancers should be generally applicable to non-virus associated human cancers
- Unbiased genetic screens and integrative, system biology based approaches will define novel therapeutic targets