

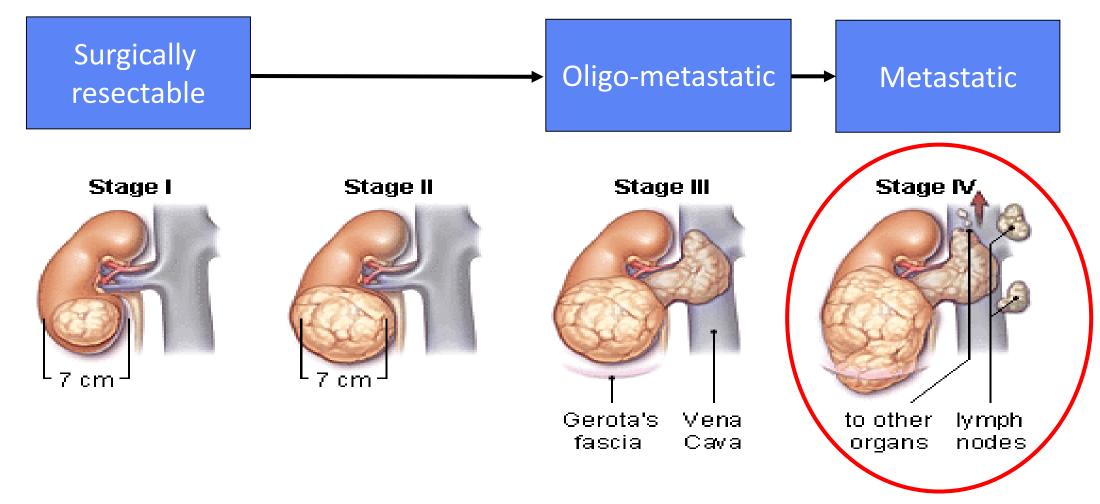
Immunotherapy for the Treatment of Genitourinary Malignancies

Earle F Burgess, MD
Chief, Genitourinary Oncology Section
Levine Cancer Institute
Atrium Health

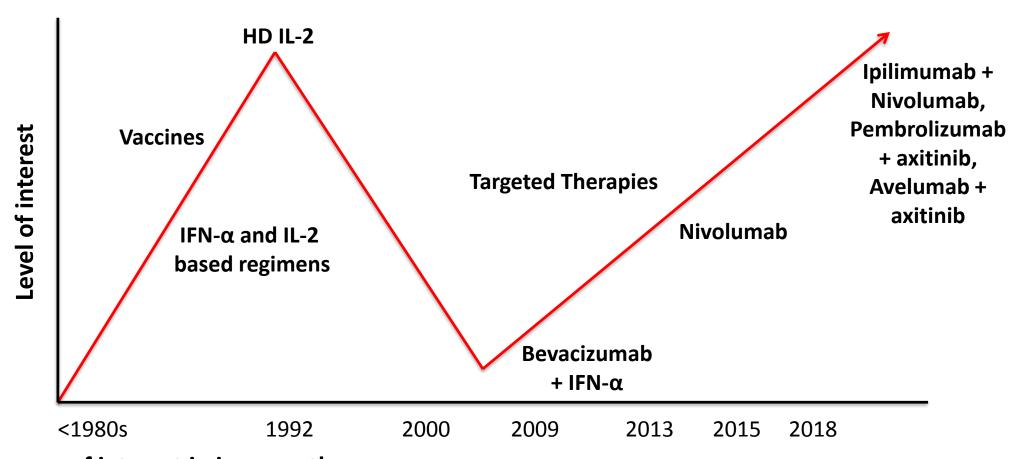
Disclosures

- Consulting: Bayer, Exelixis, Janssen
- Research Funding: Pfizer
- Ownership Interest: Exelixis, Gilead

 I will be discussing non-FDA approved indications during my presentation.



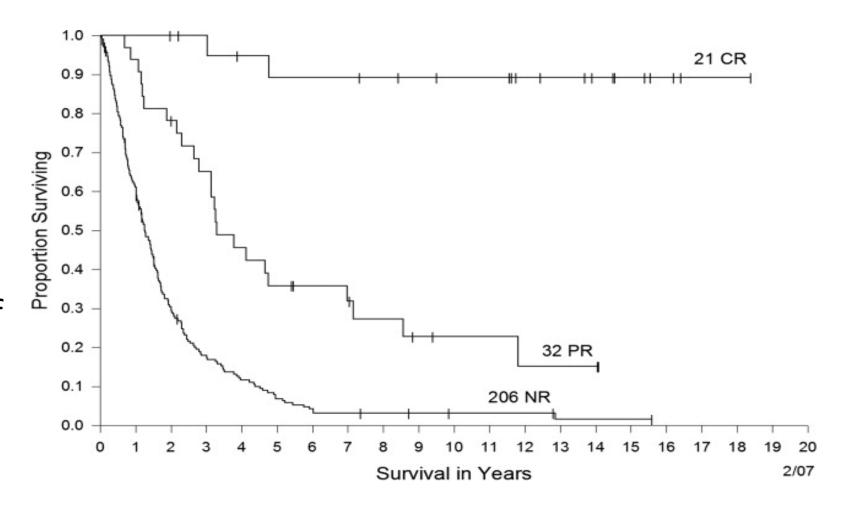
Immunotherapy for Metastatic Kidney Cancer (Renal Cell Carcinoma; RCC)



History of Immunotherapy in mRCC

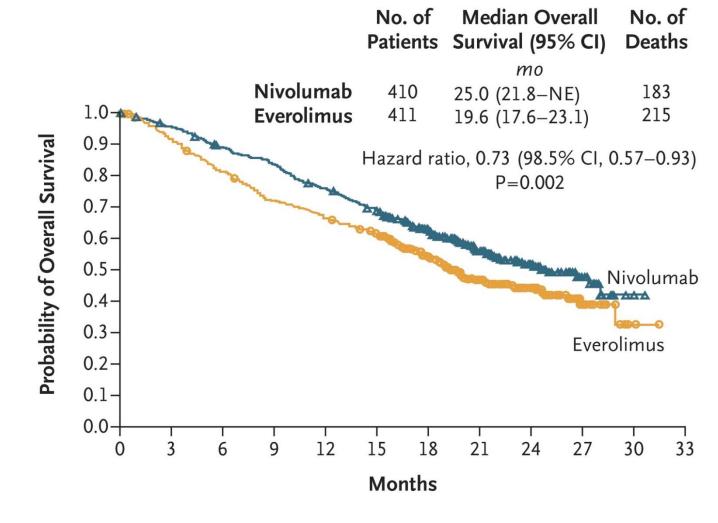
FDA-approved Immunotherapies for mRCC

Drug	Approved	Indication	Dose
High dose Interleukin-2	1992	Metastatic RCC	600,000 International Units/kg (0.037 mg/kg) IV q8hr infused over 15 minutes for a maximum 14 doses, THEN 9 days of rest, followed by a maximum of 14 more doses (1 course)
Interferon-a + bevacizumab	2009	Clear cell RCC	IFN 9 MIU s.c. three times a week + bev 10 mg/kg Q2W
Nivolumab	2015	Clear cell RCC refractory to prior VEGF targeted therapy	3mg/kg or 240mg IV Q2W or 480mg IV Q4W
Nivolumab +ipilimumab	2018	Clear cell RCC, treatment naïve	3mg/kg nivo plus 1mg/kg ipi Q3W x 4 doses then nivo maintenance at flat dosing
Pembrolizumab + axitinib	2019	Advanced RCC, Treatment naïve	200 mg pembro Q3W + 5 mg axitinib twice daily
Avelumab + axitinib	2019	Advanced RCC, Treatment naïve	800 mg avelumab Q2W + 5 mg axitinib twice daily



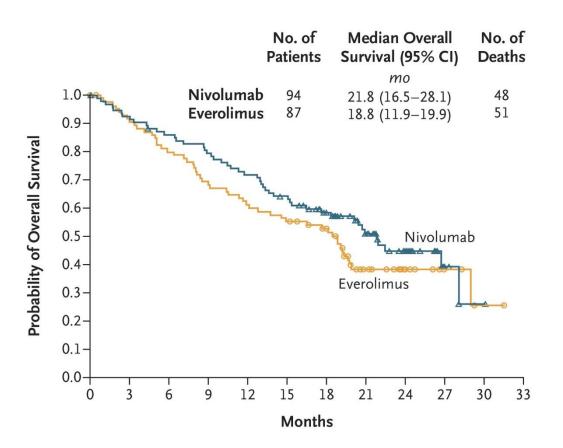
High Dose IL-2 in mRCC

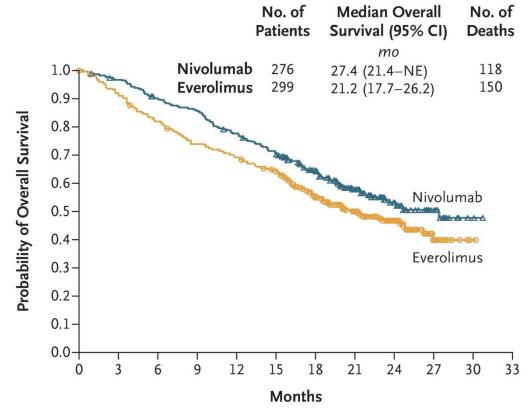
- 20 year analysis of 259 patients
- ORR = 20%
 - 9% CR (n = 23)
 - 12% PR (n = 30)
- Median duration of response = 15.5 months
- Median OS = 19 months



Second-Line Nivolumab in mRCC

- CheckMate 025 Phase III trial
- Metastatic, clear-cell disease
- One or two previous antiangiogenic treatments
- Nivolumab (3 mg/kg IV Q2W) vs everolimus (10 mg daily)





Second-Line Nivolumab in mRCC PD-L1 subgroups

PD-L1 ≥ 1%

PD-L1 < 1%

First-line Nivolumab + Ipilimumab in mRCC

Patients

- Treatment-naïve
 advanced or
 metastatic clear-cell
 RCC
- Measurable disease
- KPS ≥70%
- Tumor tissue available for PD-L1 testing

Randomize 1:1

Stratified by

- IMDC prognostic score (0 vs 1–2 vs 3–6)
- Region (US vs Canada/Europe vs Rest of World)

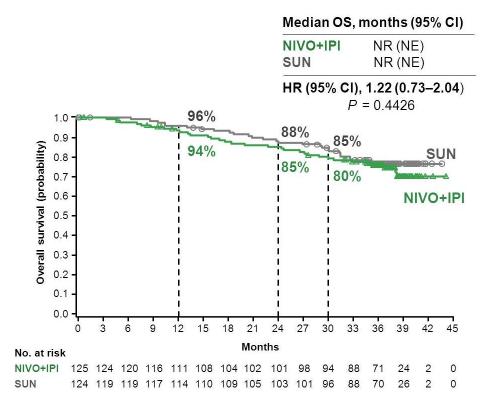
Treatment

Arm A

3 mg/kg nivolumab IV + 1 mg/kg ipilimumab IV Q3W for four doses, then 3 mg/kg nivolumab IV Q2W

Arm B
50 mg sunitinib orally once
daily for 4 weeks
(6-week cycles)

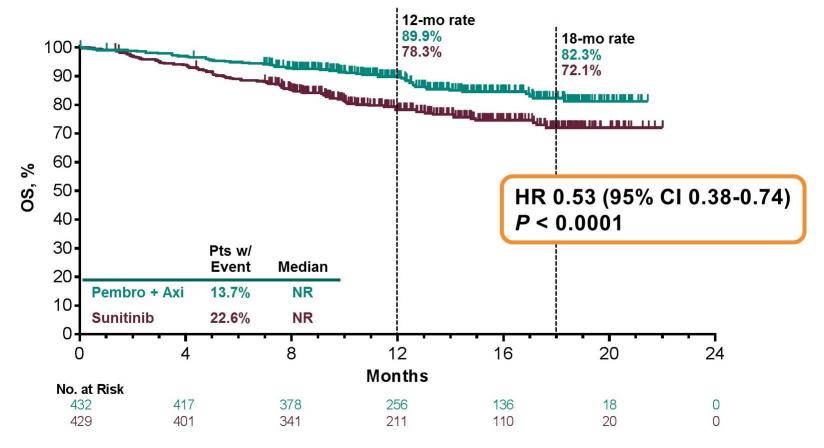
Treatment until progression or unacceptable toxicity



First-line Nivolumab + Ipilimumab in mRCC by IMDC Risk: overall survival

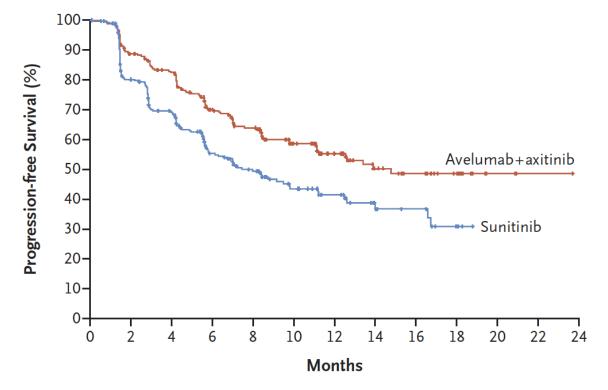
Intermediate/poor risk Median OS, months (95% CI) CheckMate 214 NR (35.6-NE) NIVO+IPI SUN 26.6 (22.1-33.4) Follow-up HR (95% CI), 0.66 (0.54-0.80) = 30 months P < 0.0001(probability) 8.0 66% 0.7 60% NIVO+IPI 0.6 53% 47% SUN 0.2 0.1 0.0 12 15 18 21 27 33 36 Months No. at risk 425 399 372 348 332 317 306 287 270 253 233 183 422 388 353 318 290 257 236 220 207 194 179 144 75

Favorable risk



First-line Pembrolizumab + axitinib in advanced RCC: overall survival

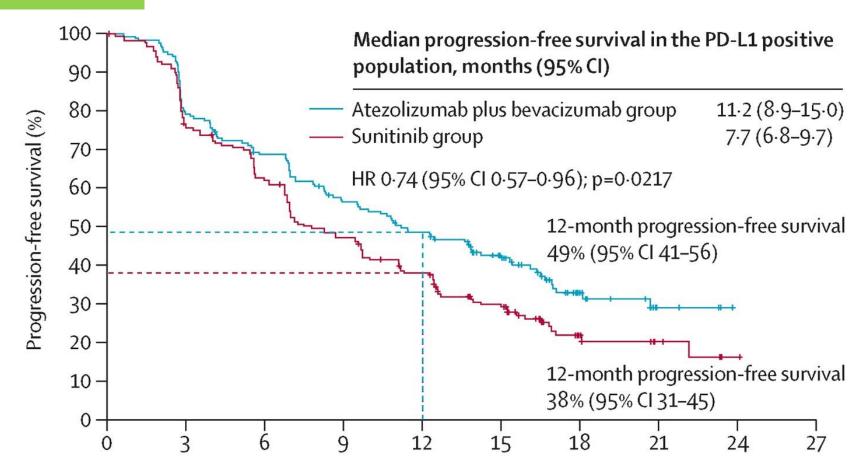
KEYNOTE-426: OS in the ITT Population



First-line avelumab + axitinib in mRCC: progression-free survival

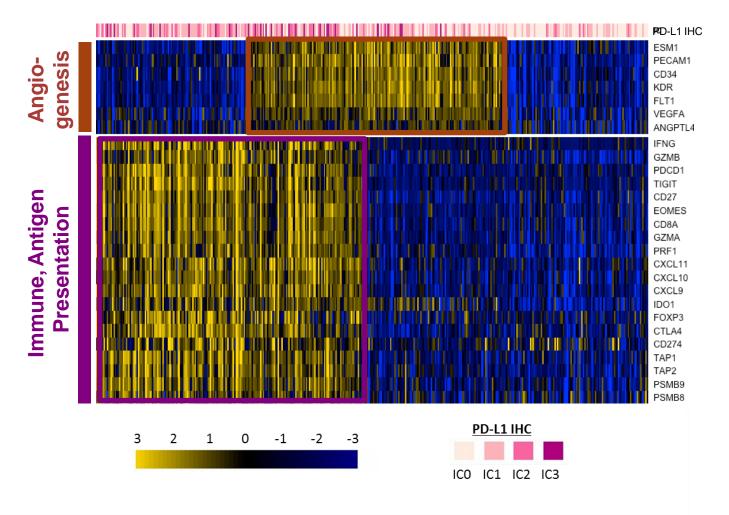
- Primary Endpoint: PFS and OS in PD-L1+
- Median PFS 13.8 mo vs
 7.2 mo (HR 0.61; 95% CI,
 0.47–0.79)
- ORR: 61.9% vs 29.7
- OS data: immature

JAVELIN 101: PFS in the PD-L1+ Population



In Development: First-line atezolizumab + bevacizumab in PD-L1+ mRCC

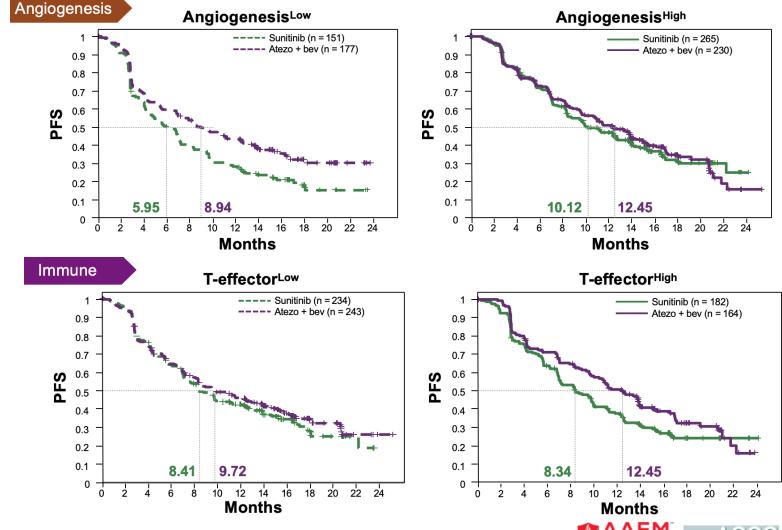
Immotion151



In Development: First-line atezolizumab + bevacizumab: molecular signatures

Identification of gene signatures based on association with clinical outcome

- T_{eff}: CD8a, IFNG, PRF1, EOMES, CD274
- Angio: VEGFA, KDR, ESM1, PECAM1, CD34, ANGPTL4



In Development: First-line atezolizumab+ bevacizumab: molecular signatures

Front-line phase 3 trials with immunotherapy agents (efficacy summary)

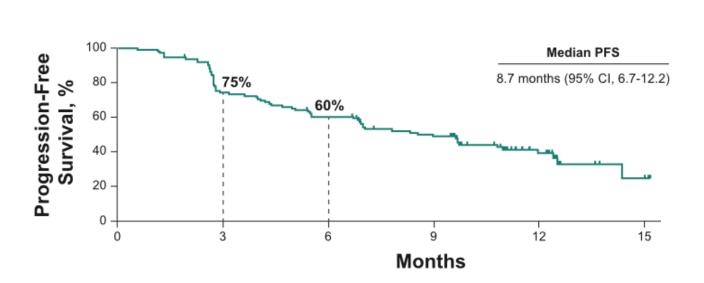
	CheckMate 214	KEYNOTE-426	JAVELIN 101	IMmotion151	
Intervention	Ipilimumab + Nivolumab	Pembrolizumab + Axitinib	Avelumab + Axitinib	Atezolizumab + Bevacizumab	
Comparator	Sunitinib	Sunitinib	Sunitinib	Sunitinib	
Primary Endpoint	OS, PFS, ORR in int/poor risk	OS, PFS	PFS, OS in PD-L1+	PFS in PD-L1+; OS	
mOS, months	NR vs 37.9 (30 mo min followup)	NR vs NR (median 12.8 mo followup)	Not reported	33.6 vs 34.9 (median 24 mo followup)	
PFS, months	9.7 vs 9.7	15.1 vs 11.1	13.8 vs 7.2	11.2 vs 7.7	
ORR (ITT), %	41% vs 34%	59.3% vs 35.7%	51.4% vs 25.7%	37% vs 33%	
CR rate (ITT)	10.5% vs 1.8%	5.8% vs 1.9%	3.4% vs 1.8%	5% vs 2%	
IIT: Intent to Treat: DEC: progression free survival: OPP: everall response rate: OC: everall survival					

IIT: Intent-to-Treat; PFS: progression-free survival; ORR: overall response rate; OS: overall survival

Ongoing front-line phase 3 trials with immunotherapy agents for front-line ccRCC

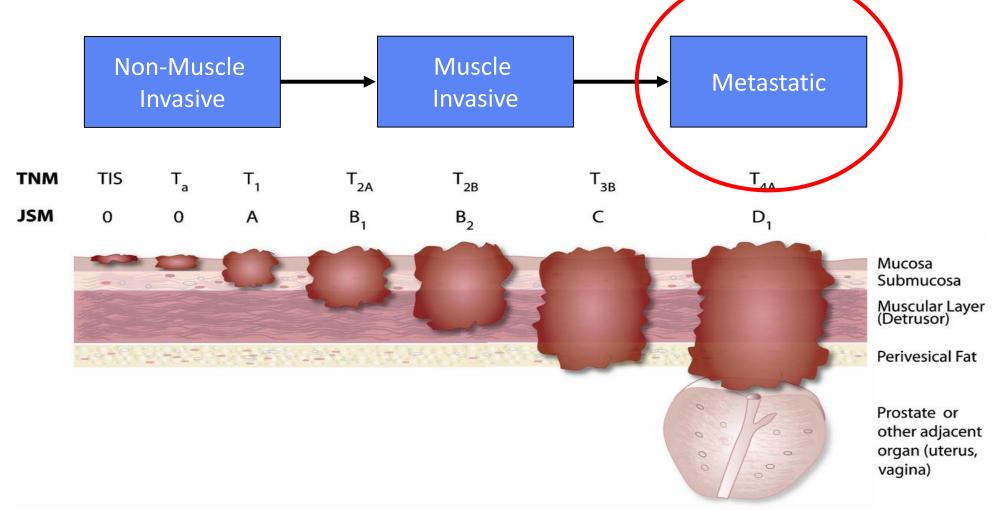
Trial number	Trial Name	Treatment Arm	Comparator Arm	Population Size	Primary End Point
NCT03141177	CheckMate 9ER	Cabozantinib + Nivolumab	Sunitinib	630	PFS
NCT02811861	CLEAR	Lenvatinib + Pembrolizumab or Everolimus	Sunitinib	1050	PFS
NCT03729245	CA045002	NKTR-214 + Nivolumab	Sunitinib	600	ORR, OS
NCT03937219	COSMIC-313	Cabozantinib + Ipilimumab + Nivolumab	Sunitinib	676	PFS
PFS: progression-free survival; ORR: overall response rate; OS: overall survival					

AAEM AGADEMY OF EMERGENCY MEDICINE



In Development: First-line pembrolizumab monotherapy in mRCC KEYNOTE - 427

	N = 110
Confirmed ORR, % (95% CI)	36.4
CR, %	3 (3)
PR, %	37 (34)
DCR, %	57 (47-67)
DOR, median (range), mo	Not Reported
DOR ≥ 6 mo (responders), %	77



Immunotherapy for Metastatic Bladder Cancer (Urothelial Carcinoma; UC)

Approved checkpoint inhibitors for mUC – *cisplatin refractory*

Drug	Approved	Indication	Dose
Atezolizumab	2016 (2018)	Advanced/metastatic UC	1200 mg Q3W
Avelumab	2017	Advanced/metastatic UC	10 mg/kg Q2W
Durvalumab	2017	Advanced/metastatic UC	10 mg/kg Q2W
Nivolumab	2017	Advanced/metastatic UC	240 mg Q2W or 480 mg Q4W
Pembrolizumab	2017 (2018)	Advanced/metastatic UC	200 mg Q3W

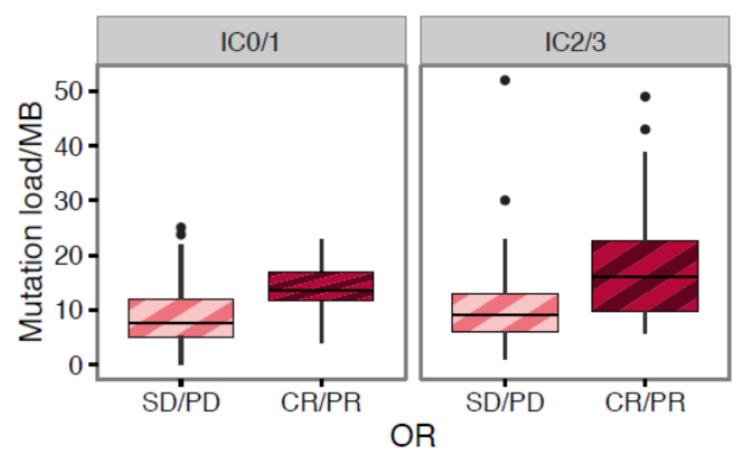
Approved checkpoint inhibitors for mUC – *cisplatin ineligible*

Drug	Approved	Indication	Dose
Atezolizumab	2017 (2018)	Advanced/metastatic UC (PD-L1 ≥5%)	1200 mg Q3W
Pembrolizumab	2017 (2018)	Advanced/metastatic UC (PD-L1 CPS ≥10)	200 mg Q3W

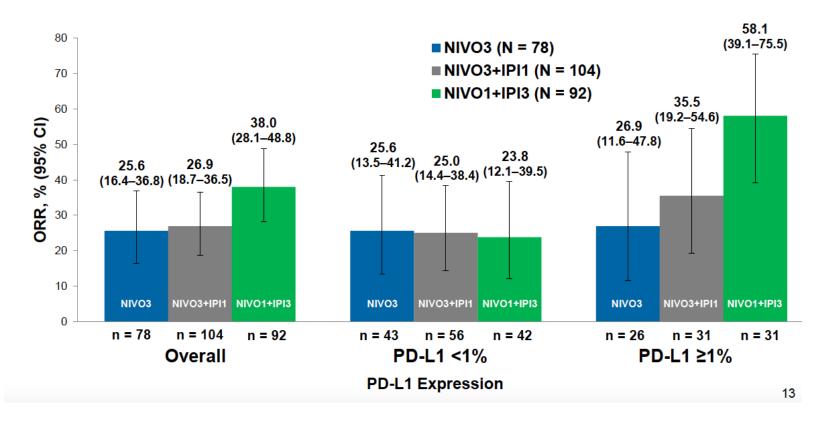
June 2018

FDA limits the use of Atezolizumab and Pembrolizumab for some urothelial cancer patients

- Locally advanced or metastatic urothelial carcinoma and ineligible for cisplatin-based chemo and tumor PD-L1 (CPS ≥ 10, pembro; IC ≥ 5% tumor area, atezo)
- Patients ineligible for any platinum-containing chemotherapy regardless of PD-L1 status

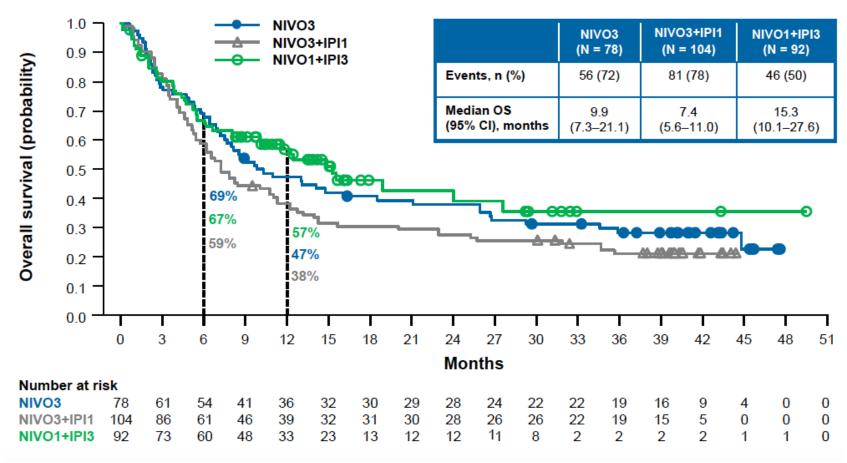


Tumor Mutational Burden (TMB) May Signal Responses with PD-1 Blockade Atezolizumab in mUC

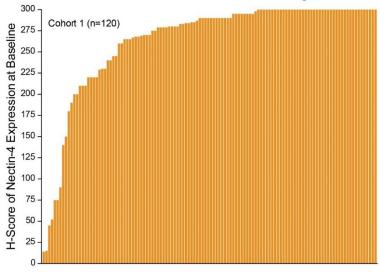


In development: Ipilimumab + Nivolumab CheckMate 032

ORR by Baseline Tumor PD-L1 Expression per Investigator



In development: Ipilimumab + Nivolumab CheckMate 032



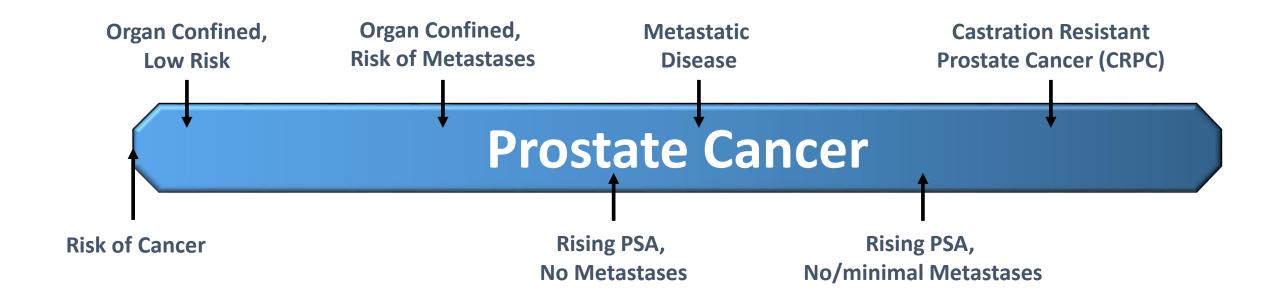
Approved antibody-drug conjugate for mUC


Drug	Approved	Indication	Dose
Enfortumab vedotin	December 2019	Locally advanced/metatstatic UC with previous α PD-1/PD-L1 and Pt-based chemotherapy	1.25 mg/kg IV on days 1, 8, and 15 of each 28-day cycle

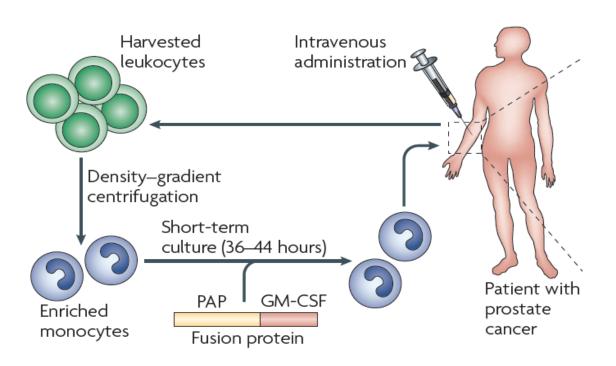
EV-201: Cohort 1 Nectin-4 Expression

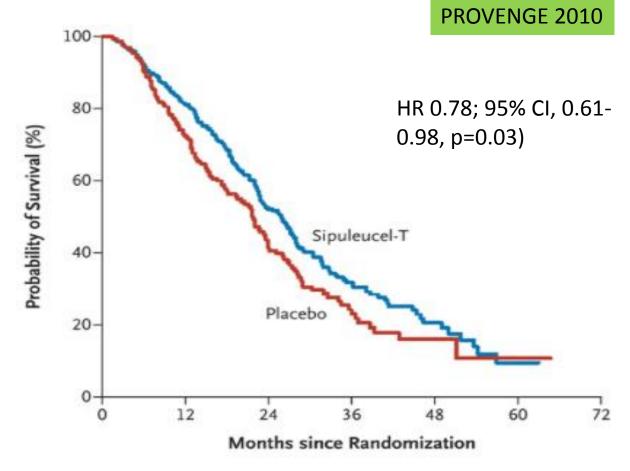
¹ Five patients did not have adequate tissue for Nectin-4 testing

EV-201: Cohort 1 Change in Tumor Measurements per BICR



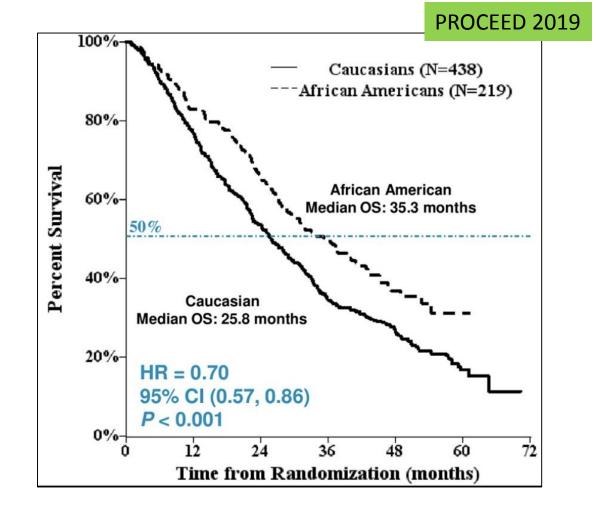
The Spectrum of Prostate Cancer





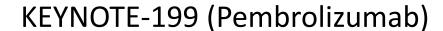
Sipuleucel-T in mCRPC

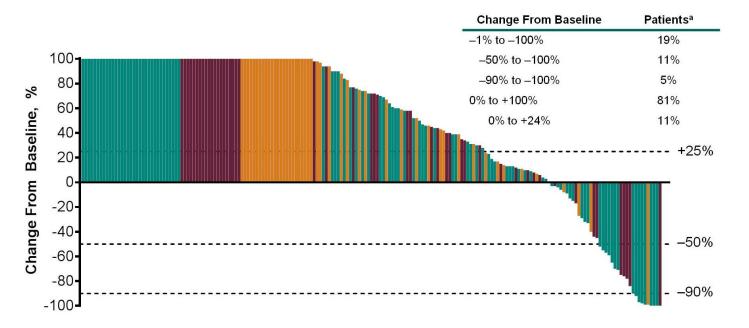
First anti-cancer therapeutic vaccine



Sipuleucel-T in mCRPC

- Post-hoc analysis of Phase 3 trial PROCEED
 (N = 1902 mCRPC patients)
- African-Americans (AA) = 438; Caucasians
 (CAU) = 219
- Median OS = 35.2 (AA) vs 29.9 mo (CAU);
 HR 0.81, 95% CI 0.68–0.97; p = 0.03.
- AA race was independently associated with prolonged OS on multivariate analysis (HR 0.60, 95% CI 0.48–0.74; p < 0.001)





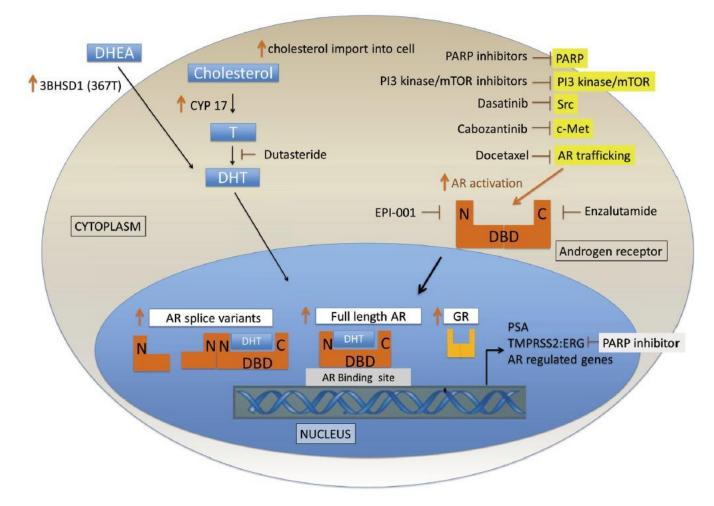
Limited efficacy of Checkpoint Inhibitors in mCRPC

No FDA-approved CIs for mCRPC

- Pembrolizumab is approved for all Microsatellite Instability-High (MSI-H) solid tumors
- MSI-H incidence is low in PC
 - Localized PC ~2%
 - Autopsy series of mCRPC
 ~12%
- MSI testing may offer pembrolizumab as an option

In development: nivolumab + ipilimumab in mCRPC

- Checkmate 650
- Nivo 1 mg/kg + Ipi 3 mg/kg Q3W for 4 doses, then Nivo 480 mg Q4W
- Progressed after 2nd-gen hormonal: 26% response @ 11.9 mo, 2 CR
- Progressed after chemo+hormonal: 10% response @ 13.5 mo, 2 CR
- Higher ORR in:
 - PD-L1 > 1%
 - DNA damage repair deficient
 - homologous recombination deficiency
 - high tumor mutational burden



Future Combinations in mCRPC to Engage Immune System

- Hormonal therapy
- Radiation
- Radium-223
- PARP inhibitors
- Chemotherapy
- New targets

Similar incidence overall

irAEs with Immune Checkpoint Inhibitors in GU Cancers - Meta-analysis of 8

studies

Adverse event	Incidence, any grade (GU only trials) (%)	Incidence, grades 3– 5 (GU only trials) (%)	Incidence any grade (non-GU clinical trials) (%)	Incidence, grades 3– 5 (non-GU clinical trials) (%)
Hypothyroid/ thyroiditis	0.8–9	0-0.6	3.9–12	0-0.1
Diabetes/DKA	0–1.5	0-0.7	0.8-0.8	0.4-0.7
LFT changes/ hepatitis	1.5-5.4	1–3.8	0.3–3.4	0.3–2.7
Pneumonitis	2–4.4	0–2	1.8-3.5	0.25-1.9
Encephalitis	NR	NR	0.2-0.8	0.0-0.2
Colitis/diarrhea	1–10	1–10	2.4–4.1	1.0-2.5
Hypophysitis	0–0.5	0-0.2	0.2-0.9	0.2-0.4
Renal Dysfunction/ nephritis	0.3–1.6	0–1.6	0.3–4.9	0.0-0.5
Myositis	0.8–5	0-0.8	NR	NR

Conclusions

- The role of immunotherapy in GU malignancies is increasing
- In RCC, many front-line checkpoint inhibitor options are approved
- Multiple checkpoint inhibitors approved for advanced/metastatic urothelial carcinoma
- Low immune engagement in prostate cancer has limited the application of immunotherapy in this disease

Additional Resources

Rini et al. Journal for ImmunoTherapy of Cancer (2016) 4:81 DOI 10.1186/s40425-016-0180-7

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of renal cell carcinoma

Brian I. Rini¹, David F. McDermott², Hans Hammers³, William Bro⁴, Ronald M. Bukowski⁵, Bernard Faba⁶, Jo Faba⁶, Robert A. Figlin⁷, Thomas Hutson⁸, Eric Jonasch⁹, Richard W. Joseph¹⁰, Bradley C. Leibovich¹¹, Thomas Olencki¹², Allan J. Pantuck¹³, David I. Quinn¹⁴, Virginia Seery², Martin H. Voss¹⁵, Christopher G. Wood⁹, Laura S. Wood¹ and Michael B. Atkins^{16*}

McNeel et al. Journal for ImmunoTherapy of Cancer (2016) 4:92 DOI 10.1186/s40425-016-0198-x

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of prostate carcinoma

Douglas G. McNeel¹, Neil H. Bander², Tomasz M. Beer³, Charles G. Drake⁴, Lawrence Fong⁵, Stacey Harrelson⁶, Philip W. Kantoff⁷, Ravi A. Madan⁸, William K. Oh⁹, David J. Peace¹⁰, Daniel P. Petrylak¹¹, Hank Porterfield¹², Oliver Sartor¹³, Neal D. Shore⁶, Susan F. Slovin⁷, Mark N. Stein¹⁴, Johannes Vieweg¹⁵ and James L. Gulley^{16*}

Kamat et al. Journal for ImmunoTherapy of Cancer (2017) 5:68 DOI 10.1186/s40425-017-0271-0

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of bladder carcinoma

Ashish M. Kamat^{1*}, Joaquim Bellmunt², Matthew D. Galsky³, Badrinath R. Konety⁴, Donald L. Lamm⁵, David Langham⁶, Cheryl T. Lee⁷, Matthew I. Milowsky⁸, Michael A. O'Donnell⁹, Peter H. O'Donnell¹⁰, Daniel P. Petrylak¹¹, Padmanee Sharma¹², Eila C. Skinner¹³, Guru Sonpavde¹⁴, John A. Taylor Ill¹⁵, Prasanth Abraham¹⁶ and Jonathan E. Rosenberg¹⁷

Case Studies

Case Study 1

55 yo female presented with 3 week history of progressive, severe right flank pain.

- CT urogram: 17cm right renal mass, soft tissue peritoneal nodules, possible right adnexal mass.
- <u>CT chest</u>: multiple sub-centimeter pulmonary nodules.
- MRI Abd: right renal vein occlusion, mass invades right adrenal gland and right/caudate hepatic lobes

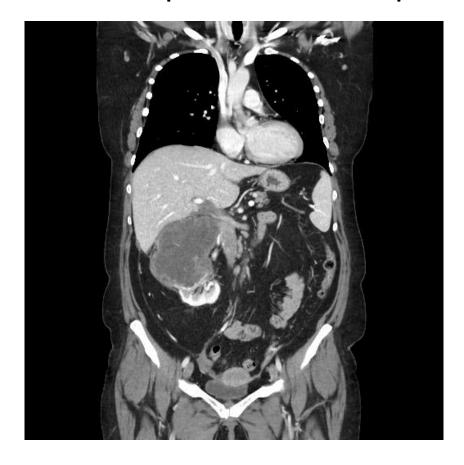
• Hb 10.4 g/dL; otherwise, CBC, CMP within normal limits. ECOG PS 1.

- CT guided biopsy of:
 - Peritoneal nodule: metastatic carcinoma consistent with renal primary; IHC: PAX-8, cam5.2, CK AE1/AE3 +, ER -
 - Right renal mass: renal cell carcinoma, clear cell type, PAX-8 + by IHC

<u>Diagnosis</u>: Metastatic renal cell clear cell carcinoma, IMDC intermediate risk

- What is preferred initial therapeutic intervention?
 - A. Cytoreductive nephrectomy
 - B. Cabozantinib
 - C. Axitinib + pembrolizumab
 - D. Ipilimumab + nivolumab

- What is preferred initial therapeutic intervention?
 - A. Cytoreductive nephrectomy
 - B. Cabozantinib
- C. Axitinib + pembrolizumab
 - D. Ipilimumab + nivolumab
 - A. Unresectable, no data with modern IO regimens
 - B. Less robust trial data
 - D. May have lower response rate, higher serious irAE rate



After 6 months of therapy, significant partial response noted, including resolution of peritoneal and pulmonary metastatic sites.

- What is the next step in her care?
 - A. Cytoreductive nephrectomy
 - B. Continue axitinib + pembrolizumab
 - C. Discontinue axitinib and continue pembrolizumab
 - D. Switch to ipilimumab + nivolumab

 Underwent attempted cytoreductive nephrectomy, which was aborted due to intra-operative finding of multiple, persistent peritoneal nodules.

• 4 peritoneal nodules were biopsied, final path:

DENSE SCLEROTIC TISSUE WITH SCATTERED CHRONIC INFLAMMATION, NO MALIGNANCY IDENTIFIED.

Continues on axitinib + pembrolizumab at this time.

64 yo male originally presented with gross hematuria. Diagnostic evaluation identified urothelial carcinoma of the right ureter, s/p right nephroU. Developed pulmonary recurrence 1 year later.

- Previously received: gemcitabine + carboplatin, weekly paclitaxel followed by progression.
- Tissue NGS analysis did not identify an actionable molecular aberration.

 Minimal dyspnea on exertion, fatigue. ECOG PS 1. Desires aggressive therapy.

<u>Diagnosis</u>: Platinum refractory metastatic urothelial carcinoma of the bladder

- What is preferred next therapeutic intervention?
 - A. Pembrolizumab
 - B. Best supportive care
- C. Clinical trial enrollment with ipilimumab + nivolumab
 - D. Enfortumab vedotin
 - A. Approriate
 - B. Appropriate but pt declines
 - D. Accelerated approval for post-chemo and post-IO pts

Received 2 doses of ipilimumab + nivolumab and presented with cough and shortness of breath.

Pre-treatment

Current

- What is the next step in his care?
 - A. Continue ipi/nivo, add prednisone 10mg daily
 - B. Hold ipi/nivo, begin empiric azithromycin
 - C. Hold ipi/nivo, begin high dose corticosteroids
 - D. Transition to best supportive care

- Admitted to ICU, received high dose corticosteroids followed by prolonged taper.
- Subsequently developed steroid refractory colitis, requiring single dose of infliximab, followed by full recovery.

- Withdrawn from clinical trial for irAE. Post-recovery imaging demonstrated a radiographic complete response.
- No additional systemic therapy in over 4 years.

Thank you!

Earle Burgess, MD earle.burgess@atriumhealth.org

