

Radiation-Induced Viral Mimicry

Sandra Demaria, M.D.

Department of Radiation Oncology

Weill Cornell Medical College, New York, NY

I have the following financial relationships to disclose:

Grant/Research support from: Lytix Biopharma, Nanobiotix

Honoraria for advisory/consulting from: Lytix Biopharma, EMD Serono, Mersana Therapeutics

The role of radiotherapy in overcoming resistance to cancer immunotherapy

Nature Reviews | Cancer

T cell activation: Antigen + Adjuvant signals...and removing the brakes

How radiation generates anti-tumor T cells?

CD8 T cells generated by RT+anti-CTLA4 act locally and systemically

Abscopal response to RT+anti-CTLA-4 (NCT 02221739)

Radiation therapy activates a viral defense response pathway

Formenti et al., Nature Medicine 2018

Abscopal tumor 600 **ICB** (pg/mL) 300. 200 CD8 100 CD40 MFI 1500-1000-BATF3-DCs 60 shcGAS TSA shNS TSA 0Ġy 3x8Gy 20Gy (cells/uL ± SD) cGAS 40 STING 20 OCH BOH **CANCER CELL** IFN-b Vanpouille-Box et al., Nature Communications, 2017

Large dynamic changes in TCR repertoire between baseline and day 22 for responders

Expansion of tumor-derived T cell clones in blood of complete responder

Formenti, Rudqvist, et al., Nature Medicine 2018

CD8 T cells present in the post-treatment blood of CR recognize an immunogenic mutation in KPNA2 (karyopherin A2)

Viral mimicry and in situ vaccination by focal RT

Productior endogeno adjuvants

Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy

Eric A. Reits,¹ James W. Hodge,² Carla A. Herberts,¹ Tom A. Groothuis,¹ Mala Chakraborty,² Elizabeth K. Wansley,² Kevin Camphausen,³ Rosalie M. Luiten,¹ Arnold H. de Ru,⁴ Joost Neijssen,¹ Alexander Griekspoor,¹ Elly Mesman,¹ Frank A. Verreck,⁴ Hergen Spits,¹ Jeffrey Schlom,² Peter van Veelen,⁴ and Jacques J. Neefjes¹ JEM 2006

PNA Seg data of NSCLC PDX

Rudqvist & Demaria, unpublished results

Lhuillier et al., Genome Medicine, 2019

Antigenic mutations in NSCLC could be modulated by RT

Immunogenic mutations as defined in: Rizvi et al., Science (2015)

Rudqvist & Demaria, unpublished

A deep dive into T cells activated in irradiated tumors

Increased clonality of TCR repertoire is driven primarily by RT

Increased divergence of TCR repertoire is driven primarily by RT

Jensen-Shannon divergence (JSD) =

= difference between pre-tx and post-tx TCR repertoires If JSD☆, then similarity♡

where KLD (Kullback-Liebler divergence) =

The AH1 repertoire is expanded but increase in clonality comes from AH1-unrelated clones

Clonality increase only in the AH1-unrelated compartment

Phenotyping of T cells infiltrating the 4T1 model using scRNA-sequencing

Sorting of CD3+ T cells 10X Single cell sequencing

- 5' gene expression
- VDJ TCR CDR3 region
- AH1-specificity

Ifn γ /Tnf α producing CD8 T cells are selectively expanded by RT+a-CTLA-4

Take Home message

- The DNA damage response elicited by radiation activates canonical viral defense pathways via cytosolic DNA
- The radiation-induced transcriptome "exposes" immunogenic mutations to the immune system
- Radiation promotes a diversification and expansion of the TIL TCR repertoire
- A subset of polyfunctional CD8 T cells is expanded only in tumors of mice treated with RT+anti-CTLA-4

Barriers: Tumor heterogeneity and resistance to T cells

Antigenic diversity= multi-site "vaccination"

Downregulation of cGAS/STING

Loss of MHC/b2m/IFN γ R

Immunize and then treat resistant lesions!

RADIATION & IMMUNITY PROGRAM

Sandra Demaria

Nils Rudqvist
Erik Wennerberg
Claire Lhuillier
Sheila Spada
Maud Charpentier
Samantha Van Nest
Yasmeen Sarfraz
Former:

Claire Vanpouille-Box
Julie Diamond

Lorenzo Galluzzi

Takahiro Yamazaki Aitziber Buque Ai Sato Marissa Friedman Jonathan J.

Silvia C. Formenti

Encouse Golden
Josephine Kang
Andrew Brandmeier
John Ng
Himanshu Nagar
Eric Ko
J. Keith Dewyngaert

Preclinical Core

Karsten Pilones Camille Daviaud Jeffrey Kraynak

Clinical Core

Maria Fenton Sharanya Chandrasekhar Pragya Yadav

WCM Biostatistics & Epidemiology

Xi Kathy Zhou

NYU

Abraham Chachoua
Benjamin Cooper
Kent Friedman
Adriana Heguy
Robert Schneider
Beatrix M. Ueberheide
Jessica R. Chapman

Mount Sinai

Sacha Gnjatic Naoko Imai

NIH, NCI Radiation Branch

Molykutty J. Aryankalayil
Norman Coleman

Harvard-Dana Farber

Kai Wucherpfennig Lucas Ferrari de Andrade

FUNDING

National Cancer Institute R01 CA201246 & R01 R01CA198533
The Chemotherapy Foundation
BCRF
DOD BCRP

