sitc

Society for Immunotherapy of Cancer

Radiation-Induced Viral Mimicry

Sandra Demaria, M.D.
Department of Radiation Oncology Weill Cornell Medical College, New York, NY

I have the following financial relationships to disclose:
Grant/Research support from: Lytix Biopharma, Nanobiotix

Honoraria for advisory/consulting from: Lytix Biopharma, EMD Serono, Mersana Therapeutics

The role of radiotherapy in overcoming resistance to cancer immunotherapy

Nature Reviews | Cancer
T cell activation: Antigen + Adjuvant signals...and removing the brakes

How radiation generates anti-tumor T cells?

CD8 T cells generated by RT+anti-CTLA4 act locally and systemically

Focal RT overcomes resistance to ICB in some mouse models

Vanpouille-Box et al., Nature Communications, June 2017

Abscopal response to RT+anti-CTLA-4 (NCT 02221739)

39 metastatic chemo-refractory NSCLC enrolled patients
22/39 patients completed treatment;
21/22 patients were evaluable

Focal RT overcomes resistance to ICB

in some patients

$$
\begin{gathered}
C R=2 \\
P R=5 \\
S D=5 \\
P D=28
\end{gathered}
$$

Radiation therapy activates a viral defense response pathway

Formenti et al., Nature Medicine 2018

Abscopal tumor

Weill Cornell
Medicine
Large dynamic changes in TCR repertoire between baseline and day 22 for responders

Changes in PBMC TCRB CDR3 repertoire
Baseline Day 22
PBMC PBMC

Formenti et al., Nature Medicine 2018

Expansion of tumor-derived T cell clones in blood of complete responder

Frequency of TIL-TCRs expanding in PBMC

Formenti, Rudqvist, et al., Nature Medicine 2018

Medicine
CD8 T cells present in the post-treatment blood of CR recognize an immunogenic mutation in KPNA2 (karyopherin A2)

p15 not detected in pre-tx tumor p16 detected in pre-tx tumor

RT enhances the expression of an immunogencic mutation
NSCLC PDTX

Viral mimicry and in situ vaccination by focal RT

Productior endogeno adjuvants

Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy

Eric A. Reits, ${ }^{1}$ James W. Hodge, ${ }^{2}$ Carla A. Herberts, ${ }^{1}$ Tom A. Groothuis, ${ }^{1}$ Mala Chakraborty, ${ }^{2}$ Elizabeth K. Wansley, ${ }^{2}$ Kevin Camphausen, ${ }^{3}$ Rosalie M. Luiten, ${ }^{1}$ Arnold H. de Ru, ${ }^{4}$ Joost Neijssen, ${ }^{1}$ Alexander Griekspoor, ${ }^{1}$ Elly Mesman, ${ }^{1}$ Frank A.Verreck, ${ }^{4}$ Hergen Spits, ${ }^{1}$ Jeffrey Schlom, ${ }^{2}$ Peter van Veelen, ${ }^{4}$ and Jacques J. Neefjes ${ }^{1}$ JEM 2006

RNA Seq data of NSCLC PDX

Rudqvist \& Demaria, unpublished results

Lhuillier et al., Genome Medicine, 2019

Antigenic mutations in NSCLC could be modulated by RT

Immunogenic mutations as defined in: Rizvi et al., Science (2015)

A deep dive into T cells activated in irradiated tumors

Increased clonality of TCR repertoire is driven primarily by RT

b

Clonal expansion of AH1 clone

RT	-	-	+	+
$a-C T L A-4$	-	+	-	+

-	-	+	+
-	+	-	+

Increased divergence of TCR repertoire is driven primarily by RT

Σ Jensen-Shannon divergence (JSD) =
= difference between pre-tx and post-tx TCR repertoires If JSD 今, then similarity $>$

Pre-tx tumor TCR repertoire

Post-tx tumor TCR repertoire
where $K L D($ Kullback-Liebler divergence $)=$

The AH1 repertoire is expanded but increase in clonality comes from AH1-unrelated clones

Expansion of AH1-binding clones

Clonality increase only in the AH1-unrelated compartment

Phenotyping of T cells infiltrating the 4T1 model using scRNA-sequencing

Ifn $\gamma / T n f \alpha$ producing CD8 T cells are selectively expanded by RT+a-CTLA-4

Take Home message

- The DNA damage response elicited by radiation activates canonical viral defense pathways via cytosolic DNA
- The radiation-induced transcriptome "exposes" immunogenic mutations to the immune system
- Radiation promotes a diversification and expansion of the TIL TCR repertoire
- A subset of polyfunctional CD8 T cells is expanded only in tumors of mice treated with RT+anti-CTLA-4

Barriers: Tumor heterogeneity and resistance to T cells

Antigenic diversity= multi-site "vaccination"

Downregulation of cGAS/STING
Loss of MHC/b2m/IFN γ R
Immunize and then treat resistant lesions!

RADIATION \& IMMUNITY PROGRAM

Sandra Demaria Nils Rudqvist
Erik Wennerberg
Claire Lhuillier
Sheila Spada
Maud Charpentier
Samantha Van Nest
Yasmeen Sarfraz
Former:
Claire Vanpouille-Box
Julie Diamond
Lorenzo Galluzzi
Takahiro Yamazaki
Aitziber Buque
Ai Sato
Marissa Friedman
Jonathan J.

Silvia C. Formenti
Encouse Golden
Josephine Kang
Andrew Brandmeier
John Ng
Himanshu Nagar
Eric Ko
J. Keith Dewyngaert

Preclinical Core
Karsten Pilones
Camille Daviaud Jeffrey Kraynak

Clinical Core Maria Fenton
Sharanya Chandrasekhar Pragya Yadav

WCM Biostatistics \& Epidemiology
Xi Kathy Zhou

NYU

Abraham Chachoua
Benjamin Cooper
Kent Friedman
Adriana Heguy
Robert Schneider
Beatrix M. Ueberheide Jessica R. Chapman

Mount Sinai
Sacha Gnjatic
Naoko Imai
NIH, NCI Radiation Branch
Molykutty J. Aryankalayil
Norman Coleman
Harvard- Dana Farber
Kai Wucherpfennig
Lucas Ferrari de Andrade

FUNDING

National Cancer Institute R01 CA201246 \&
R01 R01CA198533
The Chemotherapy Foundation BCRF
DOD BCRP

