A Data Analysis Method for Identifying Autoantibody Biomarkers in Cancer Patients Following Immunotherapy

Janet Siebert

The Team

Earle A. Chiles Research Institute

Sachin Puri James Thompson Tarsem Moudgil Ilka Assmann Theresa Ratzow Shawn Jensen Michael LaCelle Daniel Haley Christian H. Pohlein Edwin Walker Hong-Ming Hu Brendan Curti Walter J. Urba Bernard A. Fox Cell Genesys Inc, Nathalie Sacks Kristen Hege

Invitrogen/Life Technologies John Verburg Greg Korbel

Trial Design

Phase I/II study of allogeneic prostate GVAX[™] in advanced prostate cancer patients made lymphopenic by chemotherapy and infused with autologous PBMC - DOD PC020094 / PHS 02-200

- B) Cytoxan 350 mg/m² d 1-3
- C) Cytoxan + Fludarabine 20 mg/m² d 1-3

Vaccine

 Prostate GVAX is composed of two Prostate cancer cell lines, LNCap and PC3

Genetically engineered to produce GM-CSF

 Express a wide range of "common" Prostate cancer-associated antigens

The Biological Questions

- How do we detect a tumor-specific immune response following immunotherapy with a complex cellular product?
 - Complicated by alloresponse to allogeneic cell lines
 - Autologous tumor not available

Rationale / Hypothesis

 Since T cell "Help" is required for immunoglobulin classswitch, can we use the identification of novel antibodies as surrogates for an anti-cancer T cell response?

Generic Protocol / Workflow

<u>1. Sample Acquisition</u>

Pre-Treatment

Post-treatment

2. Sample Processing

3. Data Analysis

Pre-treatment

Slide courtesy of John Verburg, Invitrogen

Integrating Heterogeneous Data Sources

Earle A. Chiles Research Institute CYTOANALYTICS

Selecting the Data

- Filter results, global level: Remove antibodies that are a "hit" in a negative control sample of only buffer (plus secondary fluoursecent antibody)
- Filter results, per-patient, per-antibody:
 - Duplicate/replicate readouts reasonably close
 - Magnitude of readout reasonably greater than negative control features on array
- Collapse duplicate/replicate readouts for each sample into 1, based on minimum readout

Analyzing the Data

 For each patient for each antibody, compute fold change: post – treatment

pre-treatment

- For each patient, identify 50 greatest increases where fold change > 1.1
- For each patient, identify 50 greatest decreases where fold change < .9
- Combine patient-level lists to "Top 50" master lists
 CYTOANALYTICS

Some High Level Metrics

- 8,217 antibody readouts per sample
- 37 to 7,585 credible antibody readouts per patient; avg=2,133
 - Duplicates reasonably close; greater than negative controls
- Increased antibody responses to 418 distinct antibodies in "Top 50" increase list (fold change > 1.1)
 - 46 antibodies with increased recognition by 2 or more patients
 - 13 antibodies with increased recognition by 3 or more patients
- Decreased antibody responses to 393 distinct antibodies in "Top 50" decrease list (fold change < .9)
 - 44 antibodies with decreased recognition by 2 or more patients
 - 14 antibodies with decreased recognition by 3 or more patients

Top 50 Antibody Increases, Ordered by Rank

Top 50 Antibody Decreases, Ordered by Rank

46 "Top 50" Increases, Hits in 2 or More Patients

46 "Top 50" Increases, Hits in 2 or More Patients (Verbose)

CYTOANALYTICS

Antibody Responses Increased in 3 or More Patients

Protein ID	Number of Pationts	Avg Fold Change	Log2 (Avg Fold	Description
	Fatients		change)	Homo sapiens pyridoxine-5'-phosphate oxidase
NM 018129.3	3	29.6	4.9	(PNPO), mRNA,
 X106	3	21.9	4.5	
X21	4	16.5	4.0	
X146	8	14.7	3.9	
				BC000108 Homo sapiens, Similar to Nedd-4-like ubiquitin-protein ligase, clone MGC: 2079
NM_199423.1	4	6.3	2.7	IMAGE: 3508225, mRNA, complete cds,,
BC053667.1	4	5.8	2.5	Home copiens lectin, galactoside-binding, soluble, (galectin 3), nRNA (cDNA clone MGC:61529 MACE:6149101), complete cds
BC015818.1	4	5.5	2.5	Home capions lectin, galactoside-binding, soluble, 8 (galectin 8), transcript variant 1, mRNA (cDNA clone MCC:10507 IMAGE:4080313), complete cds
X8	3	4.4	2.1	
NM_002306.2	4	3.4	1.8	BC001120 Homo sepienc, lectin, galactoside- binding, soluble (3 (galectin 3), clone MGC: 2058 IMAGE: 3050135, mRNA, complete cds
X27	3	2.9	1.5	
				BC017305 Homo sapiens, sirtuin (silent mating type information regulation 2, S.cerevisiae, homolog) 7, clone MGC: 29505 IMAGE: 5087554,
NM_016538.1	3	2.4	1.3	mRNA, complete cds
X110	3	1.9	1.0	
X9	3	1.6	0.7	
Earle A. Chiles Research Institute				CYTOANALY1

Summary

- Protein array data requires multiple pre-processing steps
- Custom informatics provides power and flexibility to fully interrogate the data
- We can detect treatment effects in serum antibody expression
 - Both dramatic differences across individuals and some consolidation/similarities
 - 13 "Top 50" antibodies common to 3 or more patients
- To learn more, visit
 - Poster No. 92 (Sachin Puri et al)
 - Friday, 12:00pm 1:00pm & 5:30pm 6:30pm

Acknowledgments

Earle A. Chiles Research Institute Sachin Puri James Thompson Tarsem Moudgil Ilka Assmann Theresa Ratzow Shawn Jensen Michael LaCelle Daniel Haley Christian H. Pohlein Edwin Walker Hong-Ming Hu Brendan Curti Walter J. Urba Bernard A. Fox

Cell Genesys Inc, Nathalie Sacks Kristen Hege

Invitrogen/Life Technologies John Verburg Greg Korbel

To learn more visit

Poster No. 92 (Sachin Puri et al)

Friday, 12:00pm - 1:00pm & 5:30pm - 6:30pm

