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Analysis at single cell level is an old concept!

A single-cell genome image of polytene chromosomes from insects
from 1882 monograph by Flemming

Blainey et al, 2014
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METHOD OF THE YEAR

Methods to sequence the
DNA and RNA of single cells
are poised to transform
many areas of biology and
medicine.

--- Nature Methods

Research articles using single-cell
sequencing in Nature journals

Jongary 2014 | voleme 11 | namber |

nature/ method

www.nature,com/naturemethods Techniques for life scientists and chemists
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W DNase-seq in the spotlight

W Assessing local resolution in cryo-EM maps

W Intestinal stem cell culture

W Quantifying proteomics targets of electrophiles
B METHOD OF THE YEAR 2013

@ Significant increase in publications and data in the last 2 years



Advances & Application of single cell sequencing

a Timeline of Single Cell Sequencing Milestones
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Single Cells in Study

Technological advances are empowering scalability
& additional dimensionalities

Integrated Fluidic  Liquid Handling

Manual Multiplexing e . Nanodroplets Picowells In situ barcoding
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Technological advances are empowering scalability
& additional dimensionalities

Reported cells
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Genome / Transcnptome
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“Single-cell approaches stand poised to revolutionize our capacity to
understand the scale of genomic, epigenomic, and transcriptomic

diversity that occurs during the lifetime of an individual organism.”
Machaulay & Voet 2014

Weaver, 2014



Do we really know cells defining the human system?

e ~ 30 trillion cells
* Text book = ~ 300 ‘major’ cell types?

* Science =2 ~ 100 subtypes of immune cells!
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How do we define and classify cell type?




How do we define and classify cell types?

molecular markers
morphology
spatial localization
physical properties
functions
developmental origins
transcription factor dependency
growth factor dependency
chromatin states
biochemical states



Limitations of current cell type/state definitions

* Purity: Defined cell types may not be pure using the historically
defined markers

* Species: The more well-defined mouse cell types may not directly
translate to human

* Variations: An immune response induces new and unexpected states

— Do existing ‘standard’ set of surface markers truly define distinct
immune cell types?

— Are there more cell subsets that are not currently appreciated?

Solution: Leveraging the power of single cell profiling to
generate map de novo & integrate legacy knowledge



Mission: To create comprehensive reference maps of all human
cells—the fundamental units of life—as a basis for both
understanding human health and diagnosing, monitoring, and

treating disease

https://www.humancellatlas.org




Redefining the human system at single cell resolution has
tremendous potential for biology & medicine

Regenerative Disease
biology mechanisms

Variants
to drugs

Diagnostics

Drug efficacy

and resistance HCA White Paper. 2017



What can we learn from single cell

Taxonomy & Census = data-driven molecular definition of cell types
& dissection of tissue heterogeneity

Anatomy & Physiology = spatial structure of tissue
Pathology = defining disease cells and associated ecosystem

Physiology = dissection of temporal changes, responses to challenges
(e.g. drug treatment)

Developmental biology = cell fate / lineage mapping

Molecular mechanisms = cellular circuitry



First critical step = cell isolation



Cell Isolation

method

Applications Sequencing Amplification
method

Trapping cells in
droplets

FACS / cell sorter

Microdissection & Microfluidics &
micromanipulation microwells
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000 000

Adapted from Papalexi E et al. Nat Rev Immunol 2017



Common considerations for sample collection & dissociation

Fresh vs. Frozen = cells vs. nuclei (e.g. considering multi-sites study?)

Cell dissociation optimization
— Minimizing leakage and RNA degradation
— Need to optimize for every tissue = e.g readouts: FACS & bulk sequencing
— Challenging dissociation? Consider LCM & nuclei sequencing

Enrichment strategy
— Even the sampling to enrich for rare cells (e.g. profiling human blood)
— Separate immune from non-immune cells (sorting or bead/column)
— Profiling uniquely T and B cells for TCR & BCR

Cell death & RBC removal
— Live/death & CD235a marker-based depletion by FACS
— Magnetic bead depletion-based
— Column-based (e.g. MACS) depletion=> some cell types get caught in columns

Work to limit RNA degradation (fixation protocol work in some case)

e)
-80 c
sssss
i/

Fixed cells Rhydtd

xed cells
Qg‘% —_—
o
Co-encapsulation of cells with

Live cells barcoded beads A“eSJ BMC BIOI 2017

Sequencing

rnput ational
analysns




FACS isolation

Advantages:
— Sorting based on specific cell phenotype
— Archiving potential
— Full-length cDNA readout possible

Disadvantages:
— Larger amount of cell required
— Occasional isolation of more than one cells
— Putative damage of cells (epithelial cells)
— Labor intensive & more costly

Know your cells, are they sticky, are they big?
— Select an appropriate sized nozzle

Don't sort too quickly (1-2k cells per second or lower)
— The slower the more time cells sit in lysis after sorting
— 10 minutes max in lysis (some say 30 minutes)

Calibrate speed of instrument with beads
— Check alignment every 5-6 plates

Afterwards spin down to make sure cells are in lysis buffer

— Flash freeze on dry ice and move to -80C
(use very adherent seals for archiving)

Disaggregation
RBC lysis

it
Antibody

staining

®,s
3 _

* : * FACS

CD45+ CD45~

Library preparation

!

Single cell RNA sequencing

|

Computational analysis

Tirosh et al. Science 2016



Micromanipulation & LCM
LCM

* Advantages: cryosectioned
tissue

— Visual confirmation

— Applicable when only few cells are available
— Retain topological information of the cell
— Permits isolation of a cell from fixed tissue or cryosection @ laser _I-

. IR
* Disadvantages: laser
— Low throughput

— Lengthy process = RNA degradation
— Operator bias

— Contamination of other cells >1000
— Potential loss of cellular material (LCM) cells




Microfluidics & Micro-wells
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Microfluidics & Micro-wells

Credit: David Wood

 Advantages:
— Highly standardized nanoliter reaction (lower reagent cost/cell)
— Less operator bias in cell isolation and enzymatic reactions
— Automated higher throughput cell isolation with visual confirmation

* Disadvantages:
— Putative loss of cells = capture efficiency lower than if sorting in
plates in some cases
— Cannot select specific cells (unlike cell sorting)
— Bias driven by cell size and adherence (fixed size devices)
— Bias driven by cell type frequency (will capture mostly abundant types)

— In some case still need to enrich first and cells sit around longer
before lysis



Emulsion-based / Droplets

DropSeq setup




Emulsion-based / Droplets

RT
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Prakadan et al. Nat Rev Genet 2017



Drop-seq — Overview




Emulsion-based / Droplets

 Advantages:

Very scalable = thousands of cells per experiment

Smaller volumes = higher detection & better reproducibility
Smaller volumes = cheaper reagent cost

Sequencing cost become bottleneck - often shallow sequencing

* Disadvantages:

High cell input required (DropSeq) though low cell capture

Variable quality of beads = can increase cost

Need to be familiar with microfluidics (unless opt for commercial option like 10X)
Droplet-based assays can have leaky RNA (unlike plate = compartmentalization)
Capture less transcripts than plate-based (lower resolution)

Only 3’ end readout

* Some pointers:

Before library generation wash off any medium (inhibits library generation)
Adding PBS & BSA (0.05-0.01%) can help protect the cells
Filter all reagents with micron strainer before loading on microfluidic
Some purchased devices come with hydrophobic coating
— Can deteriorate (2 months at best) = recoating works
Credit: Monika Kowalczyk & Tim Tickle



Selecting scRNAseq protocol



Trapping cells in
droplets

FACS / cell sorter

Microdissection & Microfluidics &
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Cell Isolation

Applications Sequencing Amplification

method

method

Trapping cells in FACS / cell sorter  Microdissection & Microfluidics &
droplets micromanipulation microwells

-9

s
—
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e T e — T T SmartSeq?2
—_— e e T —— (Picelli et al. Nature Methods 2014)
SN SmartSeq - SMARTer kit

(Ramskold et al. Nature Biotech 2012)

—_— Tang et al.
_———T— (Nature methods 2009)
—_ STRT
—3 (Islam et al. Genome Res 2011)
o = CEL-Seq
—_ (Hashimshony et al. Cell Reports 2012)



Unique molecular identifies (UMIs) and cellular barcodes

e Cellular barcodes
— Introduced at RT step with one unique sequence per cell

— Enables pooling many libraries into one tube for
subsequent step (reduces cost & technical errors)

* UMils
— Introduce random sequences at the beginning of each
sequence .
— Reduces effect of . .
amplification bias [0 "o 7 s (&
[ S 4

by removing PCR duplicate

~ Ny~  PCR Cel

» 2 \,,»I:\,,»:r aaaaaaaaaaaaa

Identify “cell-of-origin” Correct for PCR dups
Macosko*, Basu et al Cell 2015



Trapping cells in FACS / cell sorter  Microdissection & Microfluidics &

droplets micromanipulation microwells
c
o
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Adapted from Papalexi E et al. Nat Rev Immunol 2017



Sensitivity and Specificity

Drop-Seq
Bulk Smart-Seq2 CEL-Seq2 10X
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Full length Tag counting Followup experiments

- All better than bulk
- Many between 1 and 10 molecule detection
- Sensitivity dependent on sequencing depth = can sequence more!

- Sensitivity = critical when studying lowly expressed genes Svensson V et al. Nat Methods 2017
Tim tickle



DropSeq
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Encapsulation

STAMPs
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Scalability — Massively parallel
scRNAseq approaches
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Adapted from Boswell S.
https://iccb.med.harvard.edu/single-cell-core



DropSeq vs. InDrops
DropSeq

1.Cells from — 1/10 droplets contain microparticle
suspension
2. Microparticle .

and lysis buffer - 1/10 droplets contain cell

+oo P

— 1/20 droplets contain both cell and
microparticle

InDrops
Ceus% .iL* )N @FONED, —> Match speed of bead injection with
A speed of droplet generation
DNA barcoding oil

hydrogels

— Nearly every droplet loaded with one

' - barcode
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Fa AN,
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https://iccb.med.harvard.edu/single-cell-core




DropSeq vs. InDrops

DropSeq

5.RNA hybridization 7.Reversa transcription
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10X Genomics 3’ mRNA sequencing

Barcoded

Eight-channel microfluidics chip
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A higher throughput “plug & play” version of InDrops

Zheng et al. Nat Comm 2017



inDrops, DropSeq, 10X Genomics
3’ mRNA sequencing

Capture Doublet | Number of Library

Efficiency* Rate samples at prep
once
InDrops 50-90% 3% 1 CEL-Seq
10X 50-60% 3% 8 CEL-Seq
DropSeq 5-10% 10% 1 Smart-Seq

* Capture efficiency is of the cells that reach the device

= InDrops and 10X are very similar technologies

- InDrops & DropSeq = more labor intensive but customizable & cheaper;
need some expertise in handling microfluidics

— 10X = more scalable (8 samples in parallem), “plug & play”, comes with
standardized pipeline, but much more expensive (upfront cost $25k)

— DropSeq requires 100,000 cells as input vs. 7,000 cells for 10X

- Number of transcripts detected varies between approaches (also tissue
dependent)

—> Cost per library varies greatly!



Your biological question will dictate which
method(s) to pursue

Different scRNAseq have pros and cons

Needing scalability
— Do you know which cell type you want to study?
— Looking to generate cell census?
— Are you trying to map very rare cell subsets for which you do not know markers?
— Dissecting tissue (healthy/disease) ecosystem?
— Mapping response to treatment (pre vs. post), not knowing which cells would be affected?

Needing hither sensitivity and/or full-length transcripts
— Predicting binding specificity of TCR receptors?
— Interested in studying a particular population, potentially rare?

— Want to map at higher resolution the transcriptome of signaling components/less abundant transcripts
to dissect particular biology / pathway?

— Interested in mapping allelic expression, x-chromosome inactivation, or spliced isoforms?

Interested into lineage tracing? Consider combining DNA/RNA seq and ATACseq
Trying to decipher interacting partners = spatial omics

Consider combining different approaches in your study design!



Other single cell readouts &
multi-omics approaches



Single cell epigenomics

Chromosome conformation Histone modifications
scHIC scChlP-seq
‘.“'/ ’e
),
sc,yp,
Ony
(=
Integrated
Epigenomics multi-Omics

vl

e°“°‘“

DNA accessibility DNA modifications
scATAC-seq, scDNase-seq scRRBS, scBS-seq

Epigenetic Inter-cellular
regulation Rare cell types heterogeneity

Clak et al. 2017



Technological evolving landscape — stay tuned!

Split & pool barcoding (not relying on microfluidics)
 SPLiT-Seq (Rosenberg et al. 2017)
e SCI-Seq (Cao et al. 2017)

Spatial ‘Omics”
 Multiplex FISH (Seq-FISH, MERFISH)
* Insitu RNA-seq (e.g. FISSEQ)

Multi-omics

* DNA + RNA (G +T)
 RNA + protein (T + P)
* Epigenome + RNA



Approach

Example

Combine
=

Y.
(
Sample t

N

N
\-4’

—

Multi-omics strategies

Separate

D
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\LN
4
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]
P4
=7

Split
rf{\‘
T

/ \
p=

\.
N

Convert

—
|
Lennvy

/
-~ =4 -~ 4

P
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w63 M| @ B &
FN VY VAN

o = WS SRS =50

Proteins and

DNA methylation DNA methylation and

. DNA and RNA RNA and proteins
metabolites and DNA sequence TF occupancy
=~ =
obeo - k. Unconverted DNA CGATTAGATT
e ® = @ ACGTTAT
e — TTACGTT
‘ ‘ CCGACCGACT et
l ‘ ‘ ‘ } Bisulfite x
= TCGATCGATT
ul ¢8| = | T s
L L 1 DNAin  RNAon Celllysate  Cell lysate (o) X
MS spectrum solution beads for RNA for protein Converted DNA 00
Experimental Computational

Bock et al. 2016



RNA-Seq & cell-surface proteomics in a drop!

Cell surface proteins
Intracellular proteins

Multiplexed

RNA-seq

Sequencing technology

ABCD Ullal et al. 2014

”\F@%

-
~

v
v
X

X

Nanostring

Abseq Payam et al. 2017 CITE-Seq Stoeckius et al. 2017

PCR drop

v
X
v

X

lllumina

A

Cell 4
barcode -

-

PCR handle-antibody barcode-AAAA....AA

v
X
v
v

lllumina

Baron et al. 2017



Analysis — | have generated some
scRNAseq data ... what are the next steps



Starting with the gene expression matrix

“Raw data”

[GACGATGTGCTTG. . . . ... ...... GACTGCAC
CGTTAGATGGCAGGGCCGGG. . . . ... v v v CTCATAGT
AAATTATGACGAAGTTTGTA. ... ......... GCTCATAA

CTAGCTGT . .. ......00nn GATTTTCT
GTGGGGGT. .. .......... ATAAGCTC
TATGGAGG. . ........... CCAGCACC
GTTAAACGTACCGCAGGTTT............. GTTGGCGT
AGTTTGTA. ............ AGATGGGG
TCTAGGCT . ............ GGGGACGA
GTTAAACGTACCAAGGCTTG. . . . ..o v v v un CAAAGTTC
TTGCCGTGGAGTCGTGAGGG . . . . ... .o v vt ™ TTCCAAGG
CGTTAGATGGCACCTGTGTA. . ........... TGGTACGT.
GTTAAACGTACCATCCGGTG. . . ... ... v v TTAAACCG
........... .

(Hundreds of millions of reads)

“Processed” data

Cell: 1 2 N
GENE 1 1 2 14
GENE 2 4 27 8

$» GENE 3 0 0 1
GENE M 6 2 0

Sequences derived from different scRNAseq assays are
complex and vary

Different pipelines are needed to address different sequence
formats

Common steps include:
— Aligning
— QC

— Read countin
& Credit: Karthik Shekhar



Starting with the gene expression matrix

“Raw data”

AAATTATGACGATGTGCTTG. . . . . v v v v v n GACTGCAC
CGTTAGATGGCAGGGCCGGG. . . . ... ... ... CTCATAGT
AAATTATGACGAAGTTTGTA. . ........... GCTCATAA
CTAGCTGT............. GATTTTCT

GTGGGGGT. . ........... ATAAGCTC
TTGCCGTGETGTTATGGAGG . . . o oo v v v n CCAGCACC
GTTAAACGTACCGCAGGTTT............. GTTGGCGT
ATTATGACGAAGTTTGTA. . . . ... ... ... AGATGGGG
TCTAGGCT............. GGGGACGA
GTTAAACGTACCAAGGCTTG. . .. .. .o v v CAAAGTTC
TTGCCGTGGAGTCGTGAGGG . . . . .. ... v v TTCCAAGG
CGTTAGATGGCACCTGTGTA. . . ... ... .... TGGTACGT
GTTAAACGTACCATCCGGTG. . . . ..o v v v un TTAAACCG

(Hundreds of millions of reads)

Qualifications

Full length vs. 3" vs 5’

Poly A vs. Random priming
Strand-specific vs non-specific
UMI vs. non-UMI

“Processed” data

Cell: 1 N
GENE 1 1 14
GENE 2 4 27 8
GENE 3 0 0 1
GENE M 6 2 0

Credit: Karthik Shekhar



Starting with the gene expression matrix

“Raw data”

AAATTATGACGATGTGCTTG. . . . oo v v unn GACTGCAC
CGTTAGATGGCAGGGCCGGG. . .. ... ... ... CTCATAGT
AAATTATGACGAAGTTTGTA. ... ......... GCTCATAA
CTAGCTGT............. GATTTTCT

GTGGGGGT. ............ ATAAGCTC
TTGCCGTGGTGTITATGGAGG . . . v v v v v v e CCAGCACC
GTTAAACGTACCGCAGGTTT............. GTTGGCGT
ATTATGACGAAGTTTGTA. . . . ... ... ... AGATGGGG
TCTAGGCT............. GGGGACGA
GTTAAACGTACCAAGGCTTG. . ... ........ CAAAGTTC
TTGCCGTGGAGTCGTGAGGG . . . . .. v v v v u TTCCAAGG
CGTTAGATGGCACCTGTGTA. . . ... ... .... TGGTACGT
GTTAAACGTACCATCCGGTG. . . . ..o v v v un TTAAACCG

(Hundreds of millions of reads)

Qualifications

Full length vs. 3" vs 5’
Poly A vs. Random priming

Strand-specific vs non-specific

UMI vs. non-UMI

Quality filtering
Cell barcode stratification
Alignment

Multimapping reads/intronic reads
Quantification / UMI collapse

“Processed” data

Cell: 1 N
GENE 1 1 14
GENE 2 4 27 8
GENE 3 0 0 1
GENE M 6 2 0

Credit: Karthik Shekhar



Starting with the gene expression matrix

“Raw data”

AAATTATGACGATGTGCTTG. . .. ... ...... GACTGCAC
CGTTAGATGGCAGGGCCGGG. . . .. ... ..... CTCATAGT
AAATTATGACGAAGTTTGTA............. GCTCATAA
CTAGCTGT............. GATTTTCT

GTGGGGGT. ............ ATAAGCTC
CGTGGTGTTATGGAGG . . . .. v v v et a s CCAGCACC
GTTAAACGTACCGCAGGTTT............. GTTGGCGT
ATTATG! AAGTTTGTA. ... .. ... .. .. AGATGGGG
TCTAGGCT . ............ GGGGACGA
GTTAAACGTACCAAGGCTTG............. CAAAGTTC
TTGCCGTGGAGTCGTGAGGG . . . . .. ... v v TTCCAAGG
CGTTAGATGGCACCTGTGTA............. TGGTACGT
GTTAAACGTACCATCCGGTG. . . .......... TTAAACCG

(Hundreds of millions of reads)

Qualifications

Full length vs. 3" vs 5’
Poly A vs. Random priming

Strand-specific vs non-specific

UMI vs. non-UMI

Quality filtering
Cell barcode stratification
Alignment

Multimapping reads/intronic reads
Quantification / UMI collapse

“Processed” data

Cell: 1 2 N
GENE 1 1 2 14
GENE 2 4 27 8
GENE 3 0 0 1
GENE M 6 2 0

Once | have my gene expression matrix, what’s next?

Credit: Karthik Shekhar



Inference — from data to biology

Identifying previously unidentified subsets

. | | |
Change in * ' 0@ ILC1 &% ILC3

Control cells / ’@ \@ regulation c

‘
@\
<

cells

- 'm 0@
@ Change in ; ) Rare subtype Naive Activated
OIS

composition : @ / |LCB ILC3 ILC3

> Dlscrete types

. eoe A

Spatial position

Continuous phenotypes <& ‘
Regulatory [l Pro-inflammatory

Revisiting a

Erythrocyte previous state

Source state _ |

HSC T~ Iymphocyte

Unidirectional State vacillation

temporal progression Wagner et al. 2016

Stubbington et al. 2017



Inference — from data to biology

Identifying previously unidentified subsets

‘ Change in % " : 1-. I I I
Control cells @ @ regulgtlon *“‘# \ ‘ =B ILC1 ILC2 ILC3
Re () v s ® @
@ ?:e::; H o A R
- \» Change in @ w‘?ﬁ /Rare subtype HLCA3* Na(i:\ge Ac%ed
composition IL IL IL

H”: 7

> Discrete types
ST e A
o o ‘.: Yo ﬁ.-. ® © e
...o : ‘0: *os ¢
:..f,,:t;,.; vt
8e,% .

Spatial position

Continuous phenotypes <& ‘
Regulatory [l Pro-inflammatory

Revisiting a

Erythrocyte previous state

“\ Neutrophil
Source state _ | e

HSc  T-lymphocyte

Unidirectional State vacillation

temporal progression Wagner et al. 2016

Stubbington et al. 2017



Inference — from data to biology

Control cells / ’@ ‘@ ?;;ﬂg:::u
\@ Perturb

@ cells

- S a |
T @ S,
SO
e © “.: : ﬁ.-. \.. ¢
’.:. ..3 X °
3.‘:"”4.:. :‘ e ®

Identifying previously unidentified subsets

#"@ % ICLlc>2 s

O—-0—@

ﬁ,, Rare subtype HLA*  Naive Activated
@ ILC3  IC3  IC3

Dlscrete types

A

Spatial position

Continuous phenotypes <&
Regulatory [l Pro-inflammatory

Erythrocyte

Source state _ |

HSC T~ Iymphocyte

Unidirectional
temporal progression

Revisiting a
previous state

State vacillation

Wagner et al. 2016
Stubbington et al. 2017



Inference — from data to biology

Change in
Control cells 9

A
@ @ regulation
N YouLL

Perturb

@ cells

- U Pe
QOG-
S

Discrete types

A

Continuous phenotypes <&
Regulatory [l Pro-inflammatory

Erythrocyte

“\ Neutrophil
Source state _ | e

HSc  T-lymphocyte

Unidirectional
temporal progression

Identifying previously unidentified subsets

%. w» TR

iy W g el IC2  IC3

. L c
.‘. RY {'J"”:‘ 1

e o o—~0—-@
K ) e e Rare subtype HLA* Naive Activated
‘ s ®/ ILC3  Ic3  ILC3

Spatial position

Revisiting a
previous state

State vacillation

Wagner et al. 2016
Stubbington et al. 2017



Inference — from data to biology

Change in

=
Control cells @ @ regulation
N L)

Perturb

@ cells

- U Pe
QOG-
S

Discrete types

A

Continuous phenotypes <&
Regulatory [l Pro-inflammatory

Erythrocyte

“\ Neutrophil
Source state _ | e

HSc  T-lymphocyte

Unidirectional

temporal progression

Identifying previously unidentified subsets
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iy W g el IC2  IC3

. L c
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e o o—~0—-@
K ) e e Rare subtype HLA* Naive Activated
‘ s ®/ ILC3  Ic3  ILC3

Spatial position

Revisiting a
previous state

State vacillation

Wagner et al. 2016
Stubbington et al. 2017



Inference —

Change in

=
Control cells @ @ regulation
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from data to biology

Identifying previously unidentified subsets
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o
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: ) N Rare subtype HLA* Naive Activated
@ "ﬁb® / I3  IC3  IC3

Discrete types

A
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Unidirectional

temporal progression

Revisiting a

Erythrocyte / \ previous state

Comparison between outbred
individuals, aging states, and disease

g@ versus Q Y
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Wagner et al. 2016

Stubbington et al. 2017



The type of biological questions will dictate
analyses to be undertaken

(1) Deconvolution of
heterogeneous population

o.. % o
X8 Lo
Ol 00000
00
009000
ool
(heterogeneous tissue or tumor)

dimensionality
reduction

F N
)

QOOOO ORY

00 09 o ©
. O 0Cg08 o@
5 o ©O o ©
g @ _©
£ ) ®¢ o
c| @@@ (@)

e ©©
® LY 4

A 4

Component 1

- Cell atlas
- Diseased vs. healthy
- Pre- vs. post-therapy

Adapted from Trapnell 2016

Component 2

(2) Trajectory analysis

lineage A

lineage B

trajectory
analysis

trajectory A

v

Component 1

—> Cell state transition:

— cell differentiation
— response to stimulus

- Development

(3) Dissecting transcription
mechanics

Gene transcription “off”

/ l RNA polymerase
.O (] disassociated from
O O. gene
Oﬁ

2 Pe0®
@ 000
.. 5Y®)
Q ‘. @
RNA polymerase @)
bound and

transcribing gene ‘ /

Gene transcription “on”
(transcriptional bursting & stochastic gene expression)

(4) Network Inference

Cells

Genes

o D

(identifying modules of co-regulated genes)

network inference

(inference of gene regulatory networks/subnetworks)



Typical chart for scRNAseq analysis

Quality control

Normalization

Preprocessing

Confounding factors
(scLVM, etc.)

PCA, Diffusion maps, etc. )

Generic methods
(Hierarchical, K-means, etc.)

Clusterin
9 Specific methods

(ACCENSE, SNN-Clig, MCA,
Citrus, etc.)

Heat map
Visualization : — :
Dimensionality reduction
(PCA, t-SNE, ViSNE, Probabilistic

v

Differential expression
(SCDE, MIMOSA, etc.)

Lineage inference Network modeling

With temporal info. || Co-expression networks
(WGCNA, etc.)

™| (SCUBA, etc)

Without temporal info. Gene regulatory networks
| (SPADE, etc.) u 2 .

Time inference Dynamic models
=== (Principal curve, Wanderlust, (Boolean, etc.)

Monocle, etc.)

Saadatpour et al. 2015



504

Unsupervised clustering for cell type discovery

Full Retina Drop-seq (45000 cells, 39 types)

Macosko et al., Cell, 2015

-50 0 50

<

Proof of

Principle

\




Single cell trajectory analyses

A Development and differentiation of lymphocytes are studied with time series
Pseudotime measures the progress of cells through a differentiation process

@ c Q OFatel

OOOQFatez
w0000 @ @@

sancios @) @) @

Pseudotime
B Examples of biological processes C Bifurcating pseudotime trajectory
1 Progression of stem cell development Inferred from scRNA-seq data
C@ - O .0“" % \

Stem cell Differentiated cell

2 Response of naive immune cells to infection

@Q/ =O

==

Latent variable 2

3 Adaptation of circulating immune cells
to the tissues where they ultimately reside

Latent variable 1 Stubbington et al. 2017



Single cell trajectory analyses

Simplified representation of dataset

Dimensionality reduction Trajectory modelling
Similarity Manifold Clustering Graph Pathfinding Cell ordering Method
learning
t-SNE Principal curve
Cosine Avergge
C Diffusion B(:(or:sr\tlfap orderings Wishbone
o s \ Mutual /
SLICER
Single cell , LLE KNN Shortest path = 3 greement
ex ; Euclidean from origin SCOUP
pression Detect
a0 Melust MST branches Waterfall
Mpath
k-Means Longest path CRieco0ss TSCAN
\ Project cells /
Hierarchical to path e \jONOClE
Binary tree Optimize tree = SCUBA
Possible [“pearson | [cap| [GPLvM| [som||pPam
replacement
components |Spearman| |lsomap| | MDS Mean shift TSP Seriation

Cannoodt et al. 2016



Method

Visual
abstract

Structure

Robustness
strategy

Extra input
requirements

Unbiased

Scalability
w.r.t. cells

Scalability
w.r.t. genes
Code and
documentation

Parameter
ease-of-use

Linear

Principal
curves

None

-

Single cell trajectory analyses

Linear

Ensemble,
starting cell

Starting cell Starting cell Starting cell

+

I+

Single
bifurcation
Ensemble,

starting cell

+

+

sol*

SLICER SCOUP Waterfall Mpath TSCAN Monocle SCUBA
. N ~~ e
X :..-... . " ‘{ * :‘.' ; 4
o - 8 = S N &
§ e $ ¢ ~ e et
e s ST T T2 TS
Branching Branching Linear Branching Linear Branching  Branching
i i Clustering . " .
Starting cell Startnqg Clustering of cels using Clustering Dufferen;ual Simple model
population ofcells  oxernallabeling  ©f cells expression
Starting . . .
population None Time points None Time points Time points
+ + + - + - -
T - T + + - T
+ - + t t t +
+ + + + + + +
+ - + - + + +

Cannoodt et al. 2016



Revealing T clone distributions between transcriptional state
by analyzing TCR (requires full-length or custom primers)

A TCR sequences assembled from scRNA-seq C Prediction of binding specificity
reads during Salmonella infection in mice of TCR receptors
01 | | |
: o chain B chain
o~ !
5 i
g - (wHe )
S | Antigen (@ 0
- . TCR
= i
g i
g i
3 |
i i
O Clonally related & % ! Single-cell TCR sequencing to
Teells Oo : maintain pairing information
03 |
-0.2 0.0 0.2 :
Independent component 1 |
Activated, Tl @ Effector @ Central ! Paired TCR sequences
proliferating effector memory memory i o
; B CASS---------
B TCR analysis during the immune O CASS---------
response to malaria | p CASS---------
=@ =@ (Groups of : o CASS - oo
=0==0= Clonally related : B CASS -~ -------
10 == == 1 cells i
° ATl O CASS---------
> 08 - cells | B CASS---------
= %0 i o
8 06 ° 32 S l Find enriched
S . oy & &0 < ! motifs
'g Grmn o' ° ® o @ i
g 04 o2 % 32 | Predict specificity to previous antigen
§° ° o % oo |
g 02—=o = ! C )
2 o5 B T | ‘ .
e @ © s i | Previously
0.0 cells | unseen TCR

heterodimer

Uninfected Day2 Day3 Day4 Day7
Time point |

Stubbington et al. 2017



Examples of additional analyses

Pathway and Geneset OverDispersion Analysis
(PAGODA; Fan et al. Nat. Methods 2016)

Alternative splicing
Allelic expression
Copy-number variation

N.B. : alternative splicing and allelic expression require full
length methods

— Can draw conclusions with certainty only for highly expressed genes
with good coverage

— Take into consideration the drop-out rate = a unique splice
form/allele in a single cell may be the results of detection issue



List of references for methods & tutorial

Thank you to Sean Davis for the “Awesome single cell” compilation of

software packages (and the people developing these methods) for
analysis, including RNA-seq, ATAC-seq, etc.

— https://github.com/seandavi/awesome-single-cell

Examples of tutorials to get started:

— Seurat (v2.0) - Guided Clustering Tutorial:
http://satijalab.org/seurat/pbmc3k tutorial.html

— Sanger, Hemberg Lab scRNA-seq course materials:
http://hemberg-lab.github.io/scRNA.seq.course

— Harvard Single Cell Workshop (hosted by Peter Kharchenko ):
http://hms-dbmi.github.io/scw/




Technical challenges in scRNAseq



Biological and technical factors driving gene
expression readout

Technical variation Allele-intrinsic variation Allele-extrinsic variation
e Batch effect o Bursts of transcription (cell! tygesl ﬁzd fitates)
® Fixed cell iden
o Library quality — Stochastic initiation _ Discrete Yy
. . — Stochastic duration .
e Cell-specific capture efficiency e o BIA — Continuous
. . S
e Amplification bias Sy el © e Temporal progression/oscillation
processing e Spatial location
— Niche environments

=/ =

Observed data

Genes,
proteins, loci

Normalized data

Genes, ,%;: <

proteins, loci

! !

Cell-centric Gene-centric
® Visualization ® Pseudo time order ® Rare subtypes

® Clustering and branching ® Signatures and
® Spatial inference gene sets

® Clusters of co-regulated genes
® Noise model

Wagner et al. Nat Biotech 2016



Technical confounders in scRNAseq: Batch effect

Experimental designs

& @

Prep “a” Prep “b”

) @

Prep “a” Prep “b”

Completely confounded study design

Balanced study design
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http://hemberg-lab.github.io/scRNA.seq.course



bioRxiv preprint first posted online Jul. 18, 2017; doi: http//dx.doi.org/10.1101/164889. The oongight holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC- .0 International license.

Integrated analysis of single cell transcriptomic data across conditions, technologies, and

species

Andrew Butler'? and Rahul Satija'**

A +Drug Cells Unaligned dataset
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Technical confounders in scRNAseq: Dropouts
(inefficient mMRNA capture = sparse data / “10% non-zero values)

5000 pg, rep2

./‘
103-
104 | ][I
&

.
0 10 10°  10° 10

5000 pg, rep1

10 pg, rep2

7 T T T 1
0 10 10°  10° 107
10 pg, rep1

Zero inflation

— Drop-out event during reverse-
transcription

— Genes with more expression have less
Zeros

— Complexity varies
Transcription stochasticity
— Transcription bursting

— Coordinated transcription of multigene
networks

— Over-dispersed counts
Higher Resolution
— More sources of signal

Log,o(RPM) incell 1

High-magnitude
outlier

Overdispersion

Dropout events

Log,o(RPM) in cell 2

| BRIEF COMMUNICATIONS
Bayesian approach to
single-cell differential
expression analysis

Peter V Kharchenko!-3, Lev Silberstein3-> &

David T Scadden3-5
© 2014 Nature America, Inc.

Credit: Tim Tickle



Technical confounders in scRNAseq: Dropouts
(inefficient mRNA capture - sparse data / ~10% non-zero values)
Solution: imputing missing data!

iii. " powered Markov
bioRxiv preprint first posted online Feb. 25, 2017; doi: http://dx.doi.org/10.1101/111591. The c?\fgrfht holder for this preprint (which was not ' Distance Matrix Markov Matrix matrix (after diffusion)

peer-reviewed) is the author/funder. It is made available under a CC-BY-NC 0 International license.
MAGIC: A diffusion-based imputation method reveals gene-gene
interactions in single-cell RNA-sequencing data

David van Dijk’, Juozas Nainysu, Roshan Sharmam, Pooja Kaithail* Ambrose J. Carr'*, Kevin

R. Moon®®, Linas Mazutis?, Guy Wolf’, Smita Krishnaswamy®', Dana Pe’er” kNN Graph iii. " After diffusion

MAGIC = Markov Affinity-based Graph . ,_
/mputa tion Of Cells Powered Markov Matrix  Noisy/sparse Data Matrix Imputed Déta M;?trix

- Method for imputing missing values & \ . .y "
restoring structure in the data — A

Before MAGIC After MAGIC E
& { ® D

G. Markov matrix F.
before diffusion (EMT) After diffusion

N 21!1 . .l &
‘ W
~ — |,
=t :-1‘4'. 1



Other technical confounders in scRNAseq

1- Variation in cell size and quality 2- Observed gene expression is a convolution

Read counts Observed

Differentiation + Cell cycle state + Apoptosis = expression

Q Q Cell1 Cell2z ... Na&eu profile
O Q Q Genel 25 918 .

scRNA-seq Gene 2 0 456 .

O O O S;.)ike 1 103 180 .

® © @00 @0 ©

g
Spike2 13 19 °
3 0
®
3- Variation dominated by “technical factors : o :
10 a ) i‘} °
8_
2 M #reads O % coding
S 6- ' . B # aligned O % UTR
L B % aligned [ % intronic
o 4l B % duplicate reads O % intergenic
c_;s B Primer contamination B % mRNA
aQ B Insert Sz B CV coverage
27 [ Insert SZ STD B 5'bias
1 [ Complexity B 3'bias
0 | O % ribosomal M 5'to 3' bias Buettner et al. 2015

PC Wagner et al. 2017



Experimental desigh &
common questions



How many cells should | be profiling?

Can change depending on the variability of the biology and the
expectation of finding rare populations.

Satija lab online tool — satijalab.org/howmanycells

Assumed number of cell types Minimum fraction (of rarest cell type) Minimum desired cells per type

10 0.02 5

Probability of seeing at least 5 cells from each cluster

0.99 reached at 729
0.95 reached at 619 \’

300 400 500 600 700 800

Number of cells sampled



Cell number & Read depth

* For initial pilot study = aim for around 25-30 cells from each type
— Sample with minor cell types < 5% will require sequencing at least 400 cells

— Cell preselection/enrichment may be necessary, but unbiased cell selection is
always preferred

e To study gene expression only, sequencing depth doesn’t always have to
be deep (depends on questions)
— Multiplexing hundreds of samples on one sequencing lane is common

— Cell clustering & cell-type identification benefits from large number of cells
and doesn’t always require high sequencing depth (~100,000 reads per cell)

— Gene detection starts saturating from 1 million reads per cell

— Transcription factor detection (regulatory networks) require higher read
depth and most sensitive protocols



Applications



Applications — Cancer biology

Cancer biology

Neurobiology Germline Transmission Organogenesis linical diagnostics

Tissue Mosaicism Embryology Prenatal-genetic diagnosis

Wang et al., 2015




A- Resolving intratumoral heterogeneity
& dissecting microenvironment
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A- Resolving intratumoral heterogeneity
& dissecting microenvironment

B- Investigating clonal evolution in
primary tumors

C- Studying invasion in early stage cancers
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D- Tracking metastatic dissemination D
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Strategies for census
and validation



Phase I: Generating unbiased DC map

Sample dissociation, enrichment

Lin" (CD3,CD56,CD19)
CD14"
. 9

Healthy tissue to be profiled
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Dimension 2
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e~ Single cell
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Expression profile
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Cell subsets map

.
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Dimension 1

v Cell type identification

v Deconvolution of population structure
v Identification of markers

v Variability of transcription

v Regulatory network inference



Dimension 2

Dimension 2

Phase ll: Enriching for new predicted cell populations —
developing & validating reagents and isolations strategies

1. Unbiased classification

_ =y
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_________ ' Surface markers?
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6. Project new data on original map
to validate enrichment strategy

2. Defining population
discriminative markers

3. Testing antibodies to enrich for
specific population

Detector

4B. Single cell sorting based on
new markers to validate enrichment

scRNAseq
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~~~~~~~

Dimension 1

Reverse transcription
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PCR
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markers by flow cytometry
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Phase lll: Functionally defining uniqueness of predicted
new cell population in health and disease
A- Functional Study & Characterization

1. Validating new markers 2. CyTOF, FACS, secretion, functional analysis
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Dendritic Cells (DCs) & Monocytes
/;
DCs = 1-3% & monocytes = 10-25% in blood o

)

DCs function in pathogen sensing, antigen presentation, T cell activation

Monocytes role in phagocytosis, cytokine production, macrophage source

Involved is several auto-immune diseases & cancers; therapeutic target

Several subtypes have been defined:

pDC CD141* CD1c* CD1c CD141- CD14* CD14* CD16*
i: E ?Q E QZ CD16'° CD16* (CD14'"

15-20% of DC 3-5% of DC 19-25% of DC  50-70% of DC 75-80% 2-5% 10-15%

) ) i ] of mono of mono of mono
Interferon  Antigen presentation Inflammation: Ag presentation

production to CD8* T cells to CD4* T cells



Answering key questions to discover & characterize all
blood dendritic cell (DC) & monocyte subsets

1) How many subsets can be found in blood?

2) Do they have the expected markers?

3) Can we identify better markers?

4) s there heterogeneity within the major subsets?

5) Are there previously uncharacterized subsets?

6) Can these subsets be used to map cells in human disease?

Villani et al. Science 2017 Apr 21;356(6335).
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How should we discover DC subsets?

K2 ]
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How many subsets can be
found in blood?



Observed 6 DC & 4 Monocyte clusters in blood
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Data uploaded to single cell portal

https://portals.broadinstitute.org/single_cell/study/atlas-of-human-blood-dendritic-cells-and-monocytes
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What is the uncharacterized
DC subset?
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tSNE 2

Automatic multi-dimensional classifier
predicts the presence of rare new DC subset

DC5 Challenge: rare (= 0.06% of PBMCs) Unique signature
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Approach:

(1) Find markers specific for population
(2) Develop new sorting panel
(3) Profile cells from additional individuals



Validation of DC5 population existence by flow cytometry &
scRNAseq of prospectively isolated cells

— - — 251 ’;g'i #’
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- New DC population observed in ALL 10 patients 20 20 0 20 40 60
- Represents 1.9-3.2% of the DC / 0.04-0.064% of PBMCs tSNE 1

What do they look like?
— Transcriptionally — what’s distinct and common
— Morphology
* What are its communication capabilities with other cells
— Receptors, secreted factors
— Co-culture with other cell types
Who are the direct interacting partners
— In-situ co-localization staining
Where are these cells in DC gating strategy?



AS DCs

DC5 new population falls along continuum with 2 clear extremes
Successful enrichment of both subsets & validation in 10 healthy individuals

DC5 falls across 2 extremes B- Validation of 2 putative subsets

g 5 5
g ? ‘
g N“M \N\M“ il \““ il 3 \\Hmh )
% 2 2
2 AU | ; UM
0 LR Population 2: '
myeloid - like
-‘ il \\% ~ \V‘g I |
r“h- | 1 ..I 2 T\\ > vﬁi‘ I .I III Il : II i
| [ ] W
. M Oaly i Iny
Population 1:
pDC - like T
1110 NN
| I
[ | rl | | [N
‘Il _ HN |
A- NEW panel to enrich for both putative populations C- Validation across 10 individuals
CD123* - pDC 015
Gated onllve smgleoells CD11C* -> cDC Tr - Pop. 1 & 2 share
100] S > Q010" unique signature
& ot . < -3 i - Pop. 1 shares
<_;f, 10%, 21 % 0.05 " signature with pDC
T o 3 f—"—j - Pop. 2 shares
10 e o ' X i ;
rrm e T . signature with cDC
Lin SIGLEC6

Villani et al. Sciehce 2017 Apr 21;356(6335).



Concluding thoughts

Single cell genomics methods are becoming an essential tool
for dissecting biology at an unprecedented resolution

Single cell multi-omics will empower new definition of cell
types/states and tissue

Being able to track live cells over time will be truly
transformative

Scale will continue growing and price will come down
—empowering translational efforts!

New analyses techniques and framework are needed to
handle such large dataset



A Word of Caution

“Tempering some of the enthusiasm are myriad challenges
inherent to the process, from the isolation of cells, to
amplification of their genomes or transcriptomes, to making
sense of the data. Cost is also a consideration leaving good
reason to carefully select situations that justify going to the
single-cell level.”

Bottom Line:
Single cell transcriptomics is not the solution to answering
every biological question!

Kelly Rae Chi. Nat Methods 2014: 13-7
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