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A	single-cell	genome	image	of	polytene chromosomes	from	insects	
from	1882	monograph	by	Flemming

Analysis	at	single	cell	level	is	an	old	concept!

Blainey et	al,	2014



Significant	increase	in	publications	and	data	in	the	last	2	years



Wang	et	al.	2015

Advances	&	Application	of	single	cell	sequencing



Technological	advances	are	empowering	scalability	
&	additional	dimensionalities

HCA	White	Paper.	2017



HCA	White	Paper.	2017

Technological	advances	are	empowering	scalability	
&	additional	dimensionalities



“Single-cell	approaches	stand	poised	to	revolutionize	our	capacity	to	
understand	the	scale	of	genomic,	epigenomic,	and	transcriptomic	
diversity	that	occurs	during	the	lifetime	of	an	individual	organism.”	
Machaulay &	Voet 2014

Weaver,	2014



Do	we	really	know	cells	defining	the	human	system?

• ~	30	trillion	cells

• Text	book	à ~	300	‘major’	cell	types?

• Science	à ~	100	subtypes	of	immune	cells!



Cells	define	our	core	constituents

How	do	we	define	and	classify	cell	type?



How	do	we	define	and	classify	cell	types?	

molecular	markers
morphology

spatial	localization
physical	properties

functions
developmental	origins

transcription	factor	dependency
growth	factor	dependency

chromatin	states
biochemical	states

…



• Purity:	Defined	cell	types	may	not	be	pure	using	the	historically
defined	markers

• Species: The	more	well-defined	mouse	cell	types	may	not	 directly	
translate	to	human

• Variations:	An	immune	response	induces	new	and	unexpected	states

à Do	existing	‘standard’	set	of	surface	markers	truly	define	distinct	
immune	cell	types?

à Are	there	more	cell	subsets	that	are	not	currently	appreciated?

Limitations	of	current	cell	type/state	definitions

Solution:	Leveraging	the	power	of	single	cell	profiling	to	
generate	map	de	novo &	integrate	legacy	knowledge



Mission: To create comprehensive reference maps of all human
cells—the fundamental units of life—as a basis for both
understanding human health and diagnosing, monitoring, and
treating disease

https://www.humancellatlas.org



HCA	White	Paper.	2017

Redefining	the	human	system	at	single	cell	resolution	has	
tremendous	potential	for	biology	&	medicine



• Taxonomy	&	Census	à data-driven	molecular	definition	of	cell	types	
&	dissection	of	tissue	heterogeneity

• Anatomy	&	Physiology	à spatial	structure of	tissue

• Pathologyà defining	disease	cells	and	associated	ecosystem

• Physiology	à dissection	of	temporal	changes,	responses	to	challenges	
(e.g.	drug	treatment)

• Developmental	biology	à cell	fate	/	lineage	mapping

• Molecular	mechanisms	à cellular	circuitry

What	can	we	learn	from	single	cell	



First	critical	step	à cell	isolation
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Adapted	from	Papalexi E	et	al.	Nat	Rev	Immunol 2017

Microdissection	&
micromanipulation



Common	considerations	for	sample	collection	&	dissociation
• Fresh	vs.	Frozenà cells	vs.	nuclei	(e.g.	considering	multi-sites	study?)

• Cell	dissociation	optimization	
– Minimizing	leakage	and	RNA	degradation
– Need	to	optimize	for	every	tissue	à e.g readouts:	FACS	&	bulk	sequencing
– Challenging	dissociation?	Consider	LCM	&	nuclei	sequencing

• Enrichment	strategy
– Even	the	sampling	to	enrich	for	rare	cells	(e.g.	profiling	human	blood)
– Separate	immune	from	non-immune	cells	(sorting	or	bead/column)
– Profiling	uniquely	T	and	B	cells	for	TCR	&	BCR

• Cell	death	&	RBC	removal
– Live/death	&	CD235a	marker-based	depletion	by	FACS
– Magnetic	bead	depletion-based	
– Column-based	(e.g.	MACS)	depletionà some	cell	types	get	caught	in	columns

• Work	to	limit	RNA	degradation (fixation	protocol	work	in	some	case)

Alles J	BMC	Biol 2017



FACS	isolation

• Advantages:
– Sorting	based	on	specific	cell	phenotype
– Archiving	potential
– Full-length	cDNA	readout	possible

• Disadvantages:
– Larger	amount	of	cell	required
– Occasional	isolation	of	more	than	one	cells
– Putative	damage	of	cells	(epithelial	cells)
– Labor	intensive	&	more	costly

• Know	your	cells,	are	they	sticky,	are	they	big?
– Select	an	appropriate	sized	nozzle

• Don't	sort	too	quickly	(1-2k	cells	per	second	or	lower)
– The	slower	the	more	time	cells	sit	in	lysis	after	sorting
– 10	minutes	max	in	lysis	(some	say	30	minutes)

• Calibrate	speed	of	instrument	with	beads
– Check	alignment	every	5-6	plates

• Afterwards	spin	down	to	make	sure	cells	are	in	lysis	buffer
– Flash	freeze	on	dry	ice	and	move	to	-80C																																																																											

(use	very	adherent	seals	for	archiving) Tirosh et	al.	Science	2016



• Advantages:
– Visual	confirmation
– Applicable	when	only	few	cells	are	available
– Retain	topological	information	of	the	cell
– Permits	isolation	of	a	cell	from	fixed	tissue	or	cryosection

• Disadvantages:
– Low	throughput
– Lengthy	process	à RNA	degradation
– Operator	bias
– Contamination	of	other	cells
– Potential	loss	of	cellular	material	(LCM)

Micromanipulation	&	LCM



Microfluidics &	Micro-wells

Prakadan et	al.	Nat	Rev	Genet	2017



• Advantages:
– Highly	standardized	nanoliter reaction	(lower	reagent	cost/cell)
– Less	operator	bias	in	cell	isolation	and	enzymatic	reactions
– Automated	higher	throughput	cell	isolation	with	visual	confirmation

• Disadvantages:
– Putative	loss	of	cells	à capture	efficiency	lower	than	if	sorting	in	

plates	in	some	cases
– Cannot	select	specific	cells	(unlike	cell	sorting)
– Bias	driven	by	cell	size	and	adherence	(fixed	size	devices)
– Bias	driven	by	cell	type	frequency	(will	capture	mostly	abundant	types)
– In	some	case	still	need	to	enrich		first	and	cells	sit	around	longer	

before	lysis

Microfluidics &	Micro-wells

Credit:	David	Wood



Emulsion-based	/	Droplets

DropSeq setup



Emulsion-based	/	Droplets

Prakadan et	al.	Nat	Rev	Genet	2017



Drop-seq – Overview



• Advantages:
– Very	scalable	à thousands	of	cells	per	experiment
– Smaller	volumes	à higher	detection	&	better	reproducibility
– Smaller	volumes	à cheaper	reagent	cost
– Sequencing	cost	become	bottleneck	à often	shallow	sequencing

• Disadvantages:
– High	cell	input	required	(DropSeq)	though	low	cell	capture
– Variable	quality	of	beads	à can	increase	cost
– Need	to	be	familiar	with	microfluidics	(unless	opt	for	commercial	option	like	10X)
– Droplet-based	assays	can	have	leaky	RNA	(unlike	plate	à compartmentalization)
– Capture	less	transcripts	than	plate-based	(lower	resolution)
– Only	3’	end	readout

• Some	pointers:
– Before	library	generation	wash	off	any	medium	(inhibits	library	generation)
– Adding	PBS	&	BSA	(0.05-0.01%)	can	help	protect	the	cells
– Filter	all	reagents	with	micron	strainer	before	loading	on	microfluidic
– Some	purchased	devices	come	with	hydrophobic	coating																																																		

à Can	deteriorate	(2	months	at	best)	à recoating	works

Emulsion-based	/	Droplets

Credit:	Monika	Kowalczyk &	Tim	Tickle



Selecting	scRNAseq protocol
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Tradeoff	between	scale	&	resolution
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Unique	molecular	identifies	(UMIs)	and	cellular	barcodes
• Cellular	barcodes
– Introduced	at	RT	step	with	one	unique	sequence	per	cell
– Enables	pooling	many	libraries	into	one	tube	for	
subsequent	step	(reduces	cost	&	technical	errors)

• UMIs
– Introduce	random	sequences	at	the	beginning	of	each	
sequence

– Reduces	effect	of																																																										
amplification	bias																																																																												
by	removing	PCR	duplicate
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InDrops
DropSeq
10X

Cel-Seq
MARS-Seq
SCRB-Seq
CEL-Seq2

SMART-seq
SMART-Seq2
STRT-Seq

Pooled	PCR	amplification Individual	cell	amplification

3’	Sequencing Full-length	sequencing

- Detect	Gene	expression - Detect	gene	expression
- Splicing	variants
- Allelic	variations
- TCR	&	BCR	repertoire	diversity

Adapted	from	Papalexi E	et	al.	Nat	Rev	Immunol 2017



Sensitivity	and	Specificity

Accuracy

Great!

Poor

Sensitivity

Bulk

Great!

Bulk CEL-Seq2
Drop-Seq

10XSmart-Seq2

10	molecules
1			molecule

à All	better	than	bulk
à Many	between	1	and	10	molecule	detection
à Sensitivity	dependent	on	sequencing	depth	à can	sequence	more!
à Sensitivity	=	critical	when	studying	lowly	expressed	genes Svensson V	et	al.	Nat	Methods	2017

Tim	tickle



Scalability	– Massively	parallel	
scRNAseq approaches

à Cell	lysed	in	the	drop	&	hybridize	to	
primers	attached	to	beads

à STAMP:	single	cell	transcriptomes	
attached	to	microparticles

à Droplets	are	broken	&	RT/template		
switching	occurs	on	pool

Macasko et	al.	Cell	2015

à Lysis	and	reverse	transcription	occurs	
in	the	droplet

à Samples	are	frozen	after	RT	as	
RNA:DNA	in	gel

Klein	et	al.	Cell	2015

InDrops

DropSeq

Adapted	from	Boswell		S.
https://iccb.med.harvard.edu/single-cell-core



DropSeq
DropSeq vs.	InDrops

à 1/10	droplets	contain	microparticle

à 1/10	droplets	contain	cell

à 1/20	droplets	contain	both	cell	and	
microparticle

à Match	speed	of	bead	injection	with	
speed	of	droplet	generation

à Nearly	every	droplet	loaded	with	one	
barcode

InDrops

Adapted	from	Boswell	
https://iccb.med.harvard.edu/single-cell-core



DropSeq

InDrops

DropSeq vs.	InDrops

à Smart-Seq:	RT/template-switching	to	tagmentation

à Immediate	lysis

à CEL-Seq:	RT/second	strand	synthesis	
to	IVT	and	RNA	fragmenting

à Gentile	lysis	that	may	not	be	
completed	until	sample	collection	
finished

Adapted	from	Boswell	
https://iccb.med.harvard.edu/single-cell-core



Zheng	et	al.	Nat	Comm 2017

10X	Genomics	3’	mRNA	sequencing

A	higher	throughput	“plug	&	play”	version	of	InDrops



Capture
Efficiency*

Doublet
Rate

Number	of	
samples	at	

once

Library
prep

InDrops 50-90% 3% 1 CEL-Seq

10X 50-60% 3% 8 CEL-Seq

DropSeq 5-10% 10% 1 Smart-Seq

inDrops,	DropSeq,	10X	Genomics	
3’	mRNA	sequencing

*	Capture	efficiency	is	of	the	cells	that	reach	the	device

à InDrops and	10X	are	very	similar	technologies
à InDrops &	DropSeqàmore	labor	intensive	but	customizable	&	cheaper;	

need	some	expertise	in	handling	microfluidics
à10X	àmore	scalable	(8	samples	in	parallem),	“plug	&	play”,	comes	with	

standardized	pipeline,	but	much	more	expensive	(upfront	cost	$25k)
àDropSeq requires	100,000	cells	as	input	vs.	7,000	cells	for	10X
àNumber	of	transcripts	detected	varies	between	approaches	(also	tissue	

dependent)
àCost	per	library	varies	greatly!



Your	biological	question	will	dictate	which	
method(s)	to	pursue

• Different	scRNAseq have	pros	and	cons

• Needing	scalability
– Do	you	know	which	cell	type	you	want	to	study?
– Looking	to	generate	cell	census?
– Are	you	trying	to	map	very	rare	cell	subsets	for	which	you	do	not	know	markers?
– Dissecting	tissue	(healthy/disease)	ecosystem?
– Mapping	response	to	treatment	(pre	vs.	post),	not	knowing	which	cells	would	be	affected?

• Needing	hither	sensitivity	and/or	full-length	transcripts
– Predicting	binding	specificity	of	TCR	receptors?
– Interested	in	studying	a	particular	population,	potentially	rare?
– Want	to	map	at	higher	resolution	the	transcriptome	of	signaling	components/less	abundant	transcripts	

to	dissect	particular	biology	/	pathway?
– Interested	in	mapping	allelic	expression,	x-chromosome inactivation,	or	spliced	isoforms?

• Interested	into	lineage	tracing?	Consider	combining	DNA/RNA	seq and	ATACseq

• Trying	to	decipher	interacting	partners	à spatial	omics

• Consider combining	different	approaches	in	your	study	design!



Other	single	cell	readouts	&	
multi-omics	approaches



Clak et	al.	2017

Single	cell	epigenomics



Technological	evolving	landscape	– stay	tuned!

Split	&	pool	barcoding	(not	relying	on	microfluidics)
• SPLiT-Seq (Rosenberg	et	al.	2017)
• SCI-Seq (Cao	et	al.	2017)

Spatial	‘Omics”	
• Multiplex	FISH	(Seq-FISH,	MERFISH)
• In	situ	RNA-seq (e.g.	FISSEQ)

Multi-omics
• DNA	+	RNA	(G	+T)
• RNA	+	protein	(T	+	P)
• Epigenome	+	RNA



Bock	et	al.	2016

Multi-omics	strategies



Baron	et	al.	2017

RNA-Seq &	cell-surface	proteomics	in	a	drop!



Analysis	– I	have	generated	some	
scRNAseq data	… what	are	the	next	steps



Starting	with	the	gene	expression	matrix

Credit:	Karthik Shekhar

“Raw	data” “Processed”	data

• Sequences	derived	from	different	scRNAseq assays	are	
complex	and	vary

• Different	pipelines	are	needed	to	address	different	sequence	
formats

• Common	steps	include:
– Aligning
– QC
– Read	counting



Starting	with	the	gene	expression	matrix

Qualifications
• Full	length	vs.	3’	vs	5’
• Poly	A	vs.	Random	priming
• Strand-specific	vs	non-specific
• UMI	vs.	non-UMI

“Raw	data” “Processed”	data

Credit:	Karthik Shekhar



Starting	with	the	gene	expression	matrix

Qualifications
• Full	length	vs.	3’	vs	5’
• Poly	A	vs.	Random	priming
• Strand-specific	vs	non-specific
• UMI	vs.	non-UMI

“Raw	data” “Processed”	data

• Quality	filtering
• Cell	barcode	stratification
• Alignment
• Multimapping reads/intronic reads
• Quantification	/	UMI	collapse

Credit:	Karthik Shekhar



Starting	with	the	gene	expression	matrix

Qualifications
• Full	length	vs.	3’	vs	5’
• Poly	A	vs.	Random	priming
• Strand-specific	vs	non-specific
• UMI	vs.	non-UMI

“Raw	data” “Processed”	data

• Quality	filtering
• Cell	barcode	stratification
• Alignment
• Multimapping reads/intronic reads
• Quantification	/	UMI	collapse

Credit:	Karthik Shekhar

Once	I	have	my	gene	expression	matrix,	what’s	next?



Inference	– from	data	to	biology

Wagner	et	al.	2016
Stubbington et	al.	2017



Inference	– from	data	to	biology

Wagner	et	al.	2016
Stubbington et	al.	2017



Inference	– from	data	to	biology

Wagner	et	al.	2016
Stubbington et	al.	2017



Inference	– from	data	to	biology

Wagner	et	al.	2016
Stubbington et	al.	2017



Inference	– from	data	to	biology

Wagner	et	al.	2016
Stubbington et	al.	2017



Inference	– from	data	to	biology

Wagner	et	al.	2016
Stubbington et	al.	2017



The	type	of	biological	questions	will	dictate	
analyses	to	be	undertaken

(1) Deconvolution of
heterogeneous	population

à Cell	atlas
à Diseased	vs.	healthy
à Pre- vs.	post-therapy

(heterogeneous	tissue	or	tumor)

dimensionality	
reduction

Component	1

Co
m
po

ne
nt
	2

(2)	Trajectory	analysis

à Cell	state	transition:
– cell	differentiation
– response	to	stimulus

à Development

Co
m
po

ne
nt
	2

Component	1

trajectory	A

trajectory	B

trajectory	
analysis

lineage	B

lineage	A

t0																		t1																			t2

(3)	Dissecting	transcription	
mechanics

RNA	polymerase
bound	and	
transcribing	gene

RNA	polymerase
disassociated	from	
gene

Gene	transcription	“off”

Gene	transcription	“on”
(transcriptional	bursting	&	stochastic	gene	expression)

(4)	Network	Inference
Cells

Genes

Low High

Module	1

Module	2

Module	3

network	inference

(identifying	modules	of	co-regulated	genes)

(inference	of	gene	regulatory	networks/subnetworks)
Adapted	from	Trapnell 2016



Typical	chart	for	scRNAseq analysis

Saadatpour et	al.	2015



Unsupervised	clustering	for	cell	type	discovery



Single	cell	trajectory	analyses

Stubbington et	al.	2017



Single	cell	trajectory	analyses

Simplified	representation	of	dataset

Cannoodt et	al.	2016



Single	cell	trajectory	analyses

Cannoodt et	al.	2016



Revealing	T	clone	distributions	between	transcriptional	state	
by	analyzing	TCR	(requires	full-length	or	custom	primers)

Stubbington et	al.	2017



Examples	of	additional	analyses

• Pathway	and	Geneset OverDispersion Analysis																		
(PAGODA;	Fan	et	al.	Nat.	Methods	2016)

• Alternative	splicing
• Allelic	expression
• Copy-number	variation
• N.B.	:	alternative	splicing	and	allelic	expression	require	full	

length	methods
– Can	draw	conclusions	with	certainty	only	for	highly	expressed	genes	

with	good	coverage
– Take	into	consideration	the	drop-out	rate	à a	unique	splice	

form/allele	in	a	single	cell	may	be	the	results	of	detection	issue



List	of	references	for	methods	&	tutorial

• Thank	you	to	Sean	Davis	for	the	“Awesome	single	cell”	compilation	of	
software	packages	(and	the	people	developing	these	methods)	for	
analysis,	including	RNA-seq,	ATAC-seq,	etc.
– https://github.com/seandavi/awesome-single-cell

• Examples	of	tutorials	to	get	started:
– Seurat	(v2.0)	- Guided	Clustering	Tutorial:	

http://satijalab.org/seurat/pbmc3k_tutorial.html
– Sanger,	Hemberg	Lab	scRNA-seq	course	materials:	

http://hemberg-lab.github.io/scRNA.seq.course
– Harvard	Single	Cell	Workshop	(hosted	by	Peter	Kharchenko ):	

http://hms-dbmi.github.io/scw/



Technical	challenges	in	scRNAseq



Biological	and	technical	factors	driving	gene	
expression	readout

Wagner	et	al.	Nat	Biotech	2016



Technical	confounders	in	scRNAseq:	Batch	effect

http://hemberg-lab.github.io/scRNA.seq.course





Technical	confounders	in	scRNAseq:	Dropouts
(inefficient	mRNA	capture	à sparse	data	/	~10%	non-zero	values)

• Zero	inflation
– Drop-out	event	during	reverse-

transcription
– Genes	with	more	expression	have	less	

zeros
– Complexity	varies

• Transcription	stochasticity
– Transcription	bursting
– Coordinated	transcription	of	multigene	

networks
– Over-dispersed	counts

• Higher	Resolution
– More	sources	of	signal

Credit:	Tim	Tickle	

Log10(RPM)	in	cell	2



Technical	confounders	in	scRNAseq:	Dropouts
(inefficient	mRNA	capture	à sparse	data	/	~10%	non-zero	values)

Solution:	imputing	missing	data!

MAGIC =	Markov	Affinity-based	Graph	
Imputation	of	Cells
à Method	for	imputing	missing	values	&	

restoring	structure	in	the	data



Other	technical	confounders	in	scRNAseq
1- Variation	in	cell	size	and	quality 2- Observed	gene	expression	is	a	convolution

3- Variation	dominated	by	“technical	factors

Buettner et	al.	2015
Wagner	et	al.	2017



Experimental	design	&	
common	questions	



How	many	cells should	I	be	profiling?

• Can	change	depending	on	the	variability	of	the	biology	and	the	
expectation	of	finding	rare	populations.

• Satija lab	online	tool – satijalab.org/howmanycells



Cell	number	&	Read	depth

• For	initial	pilot	study	à aim	for	around	25-30	cells	from	each	type
– Sample	with	minor	cell	types	<	5%	will	require	sequencing	at	least	400	cells
– Cell	preselection/enrichment		may	be	necessary,	but	unbiased	cell	selection	is	

always	preferred

• To	study	gene	expression	only,	sequencing	depth	doesn’t	always	have	to	
be	deep	(depends	on	questions)
– Multiplexing	hundreds	of	samples	on	one	sequencing	lane	is	common
– Cell	clustering	&	cell-type	identification	benefits	from	large	number	of	cells	

and	doesn’t	always	require	high	sequencing	depth	(~100,000	reads	per	cell)
– Gene	detection	starts	saturating	from	1	million	reads	per	cell
– Transcription	factor	detection	(regulatory	networks)	require	higher	read	

depth	and	most	sensitive	protocols



Applications



Applications	– Cancer	biology



A- Resolving	intratumoral heterogeneity
&	dissecting	microenvironment

Navin,	2015
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A- Resolving	intratumoral heterogeneity
&	dissecting	microenvironment

B- Investigating	clonal	evolution	in	
primary	tumors
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D- Tracking	metastatic	dissemination

Navin,	2015



A- Resolving	intratumoral heterogeneity
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Strategies	for	census	
and validation



Sample dissociation, enrichment

Single cell
RNA-Sequencing

Expression profile
clustering

Phase	I:	Generating	unbiased	DC	map

✓ Cell type identification
✓ Deconvolution of population structure
✓ Identification of markers
✓ Variability of transcription
✓ Regulatory network inference

Cell subsets map

Dimension	1

Di
m
en

sio
n	
2

OR

Healthy tissue to be profiled

à Plate-based (e.g. SS2, Cel-Seq2, SCRB-Seq)
à Droplet-based (e.g.10X, DropSeq, InDrop)

Spleen

Tonsils

Lymph
nodes

Lymphoid Organs

Non-Lymphoid “Barrier” Organs

Skin Lung Gut

Blood



Phase	II:	Enriching	for	new	predicted	cell	populations	–
developing	&	validating	reagents	and	isolations	strategies

1. Unbiased classification

Dimension	1
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2

6. Project new data on original map 
to validate enrichment strategy

Dimension	1
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n	
2 scRNAseq

projection

✔✔

✔

Laser

+ -Flow
sorting

3. Testing antibodies to enrich for 
specific population 

Testing Abs

Detector

Marker 1
Ma

rk
er

 2

4A. Validating discriminative
markers by flow cytometry

Specific gene 
signature

Surface markers? 
Antibodies?

2. Defining population 
discriminative markers

Markers

4B. Single cell sorting based on 
new markers to validate enrichment
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Disease State

Phase	III:	Functionally	defining	uniqueness	of	predicted	
new	cell	population	in	health	and	disease

A- Functional Study & Characterization

B- Mapping Disease Healthy State



1. unbiased DC map 2. Identifying & validating new markers 
and gating strategies

3. Functional characterization 4. Mapping & studying disorders

Healthy State Disease State



Dendritic	Cells	(DCs)	&	Monocytes

• DCs	≈	1-3%	&	monocytes	≈	10-25%		in	blood

• DCs	function	in pathogen	sensing,	antigen	presentation,	T	cell	activation

• Monocytes	role	in	phagocytosis,	cytokine	production,	macrophage	source

• Involved	is	several	auto-immune	diseases	&	cancers;	therapeutic	target

• Several	subtypes	have	been	defined:

pDC

15-20%	of	DC

Interferon
production

CD141+

3-5% of DC

Antigen	presentation
to	CD8+ T	cells	

CD1c+ CD1c- CD141-

19-25%	of	DC 50-70%	of	DC

Inflammation:	Ag	presentation
to	CD4+ T	cells

CD14+
CD16lo

CD14+
CD16+

CD16+
CD14lo

75-80%	
of	mono

2-5%	
of	mono

10-15%	
of	mono



1) How	many subsets	can	be	found	in	blood?	

2) Do	they	have	the	expected	markers?

3) Can	we	identify	better	markers?	

4) Is	there	heterogeneity within	the	major	subsets?

5) Are	there	previously	uncharacterized	subsets?

6) Can	these	subsets	be	used	to	map	cells	in	human	disease?

Answering	key	questions	to	discover	&	characterize	all	
blood	dendritic	cell	(DC)	&	monocyte	subsets	

Villani	et	al.	Science 2017	Apr	21;356(6335).
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✔ Single	cell	sorting	done								
from	a	constant	source

✔ Cell	sorting	with	optimized	
panel	of	markers

✔ Deep	Sequencing
(1-2M	reads/cells)

Adaptive sampling strategy:
DCs: Monocytes:

How	should	we	discover	DC	subsets?



How	many	subsets	can	be	
found	in	blood?



Mono1
(CD14)

Mono2
(CD16)

Mono3Mono4

Observed	6	DC	&	4	Monocyte	clusters	in	blood

DC3
(CD14-like)

DC4

G0S2
MXD1
CXCR1
CXCR2
VNN2

PRF1
GNLY
CTSW
KLRD1
GZMA

(CD1C– CD141–)

DC6
(pDC) DC1 (CD141)

DC2

(CD1C)

DC5 (New?)



Data	uploaded	to	single	cell	portal
https://portals.broadinstitute.org/single_cell/study/atlas-of-human-blood-dendritic-cells-and-monocytes

Tim	Tickle



What	is	the	uncharacterized	
DC	subset?

New	
population



DC5	Challenge:	rare	(≈	0.06%	of	PBMCs) Unique	signature

New	sorting	panel

SIGLEC6

Mono1%
Mono2%

Mono3%Mono4%

DC3%
(CD14,like)%

DC4%(CD1C–%CD141–)%

DC6%
(pDC)% DC1% (CD141)%

DC2%

(CD1C)%

DC5% (New)%

Automatic	multi-dimensional	classifier	
predicts	the	presence	of	rare	new	DC	subset

Approach:
(1) Find	markers	specific	for	population
(2) Develop	new	sorting	panel
(3) Profile	cells	from	additional	individuals



SIGLEC6(SIGLEC6(SIGLEC6(

AX
L(

AX
L(

AX
L(

Individual(1( Individual(2( Individual(3(

à New	DC	population	observed	in	ALL	10	patients
à Represents	1.9-3.2%	of	the	DC	/	0.04-0.064%	of	PBMCs

• What	do	they	look	like?	
– Transcriptionally	– what’s	distinct	and	common
– Morphology

• What	are	its	communication	capabilities	with	other	cells
– Receptors,	secreted	factors
– Co-culture	with	other	cell	types

• Who	are	the	direct	interacting	partners
– In-situ	co-localization	staining

• Where	are	these	cells	in	DC	gating	strategy?

Validation	of	DC5	population	existence	by	flow	cytometry &
scRNAseq of	prospectively	isolated	cells



Successful	enrichment	of	both	subsets	&	validation	in	10	healthy	individuals
DC5	new	population	falls	along	continuum	with	2	clear	extremes	

Population	2:	
myeloid - like

A- NEW	panel	to	enrich	for	both	putative	populations

Population	1:
pDC – like

B- Validation	of	2	putative	subsets

C- Validation	across	10	individuals

DC5	falls	across	2	extremes

à Pop.	1	&	2	share	
unique	signature

à Pop.	1	shares	
signature	with	pDC

à Pop.	2	shares	
signature	with	cDC

CD123+ à pDC
CD11C+ à cDC

Villani	et	al.	Science 2017	Apr	21;356(6335).



• Single	cell	genomics	methods	are	becoming	an	essential	tool	
for	dissecting	biology	at	an	unprecedented	resolution

• Single	cell	multi-omics	will	empower	new	definition	of	cell	
types/states	and	tissue

• Being	able	to	track	live	cells	over	time	will	be	truly	
transformative

• Scale	will	continue	growing	and	price	will	come	down	
àempowering	translational	efforts!

• New	analyses	techniques	and	framework	are	needed	to	
handle	such	large	dataset

Concluding	thoughts



A	Word	of	Caution

“Tempering	some	of	the	enthusiasm	are	myriad	challenges	
inherent	to	the	process,	from	the	isolation	of	cells,	to	

amplification	of	their	genomes	or	transcriptomes,	to	making	
sense	of	the	data.	Cost	is	also	a	consideration	leaving	good	
reason	to	carefully	select	situations	that	justify	going	to	the	

single-cell	level.”

Bottom	Line:
Single	cell	transcriptomics is	not	the	solution	to	answering	

every	biological	question!

Kelly	Rae	Chi.	Nat	Methods	2014:	13-7
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