

## Immune-Related Adverse Events from Cancer Immunotherapy

Jarushka Naidoo, MB BCH MHS

**Assistant Professor of Oncology** 

Johns Hopkins University

Bloomberg-Kimmel Institute for Cancer Immunotherapy



## Disclosures

#### **Research Funding:**

Merck

AstraZeneca

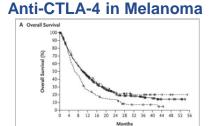
#### **Consulting:**

Bristol Myers-Squibb

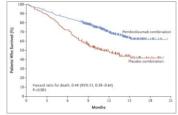
AstraZeneca

Roche/Genentech

#### Honoraria:


Bristol Myers-Squibb

AstraZeneca/MedImmune




### Key Milestones Immunotherapy for Cancer





Anti-PD-1+Chemo in NSCLC



William Coley uses live bacteria as immune stimulant to treat cancer

IL-2 is approved as an anticancer therapy First preventive vaccine used for cervix cancer

First regulatory approval of an anti-cancer vaccine

First approval of an immune checkpoint inhibitor for cancer

Immunotherapybased combinations approved

Anti-PD-1 for early stage cancer

1893 1992

992 2006

2010

2011 2014

2015

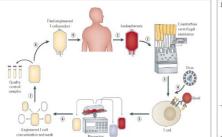
2017

2019

ERYSIPELAS GERMS
AS CURE FOR CANCER

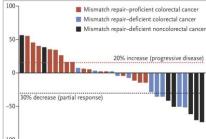
Dr. Coley's Remedy of Mixed

Toxins Makes One Disease
Cast Out the Other.


MANY CASES CURED HERE

Physician Has Used the Cure for 19 Years and Treated 430 Cases— Probably 150 Sure Cures.

Following news from St. Lov's that two men have been cured of cancer in the City Hospital there by the use of a fluid discovered by Dr. William B. Coley of New York it came out vesterCERVICAL CANCER VACCINE
What you must know?

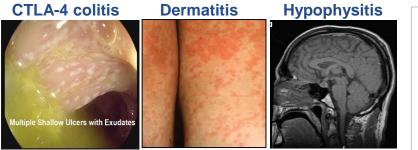

100 | Log-rank P = .010 | HR = 1.71, 95% CL 1.13 to 2.58 | Median benefit: 4.5 months | Spuleucel-T (n = 82) | Median 2.1.4 months | Median 2.1.4 months | O 10 20 30 40 | Survival Time (months)

Sipuleucel-T Prostate Cancer First regulatory approval of CAR T-cell therapy



**CD19-CARs in ALL** 

Tumor agnostic approval for Anti-PD-1




**MSI-high tumors** 

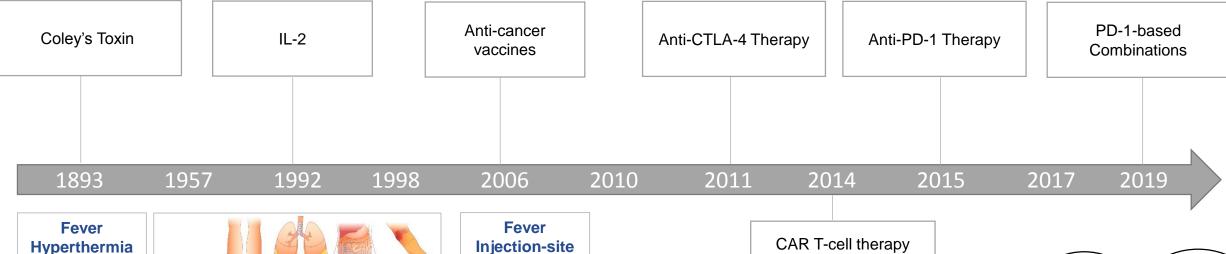
Melero et al, *Nat Rev Clin Oncol*Fesnak AF et al, *Nat Rev*Maude et al, *NEJM*Hodi et al, *NEJM*

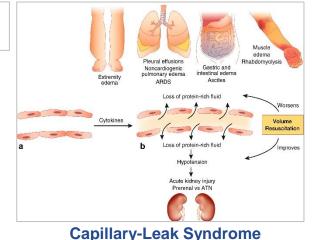


Key Milestones
Immune-related Adverse Events

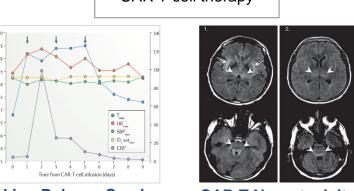


Organ-specific irAEs


Pneumonitis Thyroiditis Arthritis


Myocarditis Hepatitis Nephritis

Encephalitis Colitis Type I Diabetes


**Pancreatitis** 

ITP





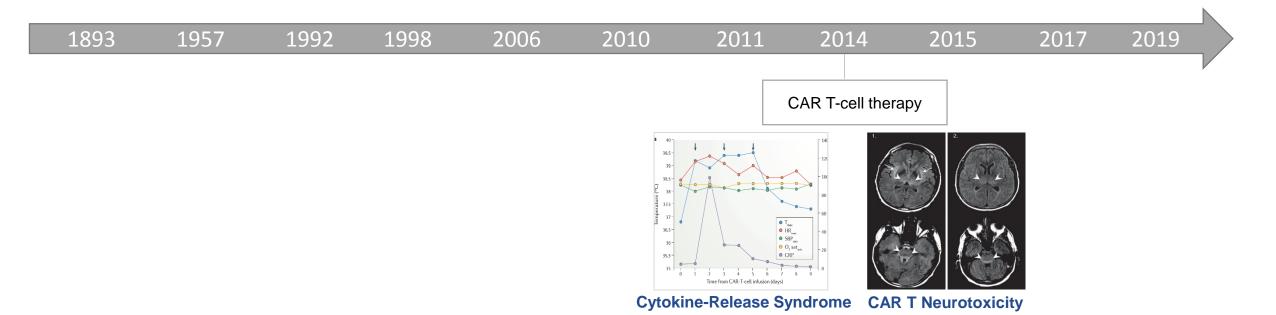




Myositis Myasthenia Gravis

Myocarditis

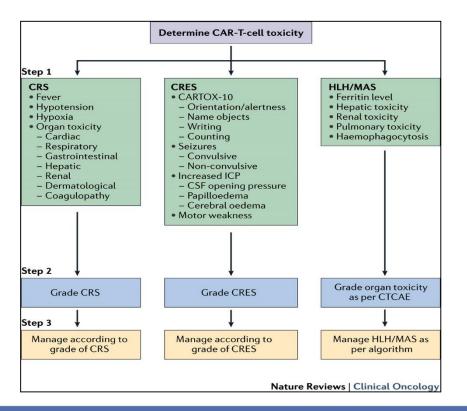
**Cytokine-Release Syndrome** 


**CAR T Neurotoxicity** 

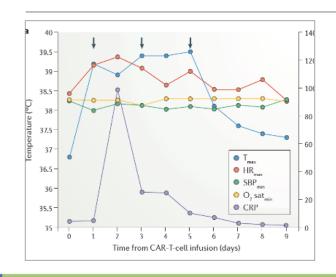
**Uveitus** 

**Multisystem irAE Syndromes** 




### Key Milestones Immune-related Adverse Events






## CAR T-cell Therapy Cytokine Release Syndrome

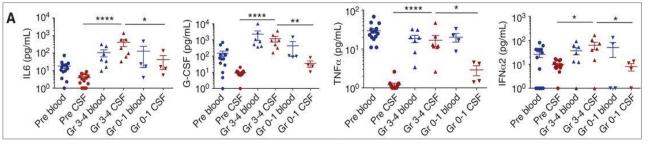
- Most common CAR-T Toxicity
- severe CRS can evolve into fulminant haemophagocytic lymphohistiocytosis (HLH)



| CRS Grade                         | Anti-IL-6                              | Steroids                                          | Supportive Care                                                                             |
|-----------------------------------|----------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------|
| Grade 1<br>(fever > 38°C)         | CRS<br>> 3 days                        | N/A                                               | <ul><li>Antibiotics</li><li>GCSF if neutropenic</li></ul>                                   |
| Grade 2<br>(fever/hypotension)    | Tocilizumab<br>8mg/kg (4 doses<br>max) | refractory<br>hypotension<br>Dex 10mg q6          | <ul><li> IV fluids, pressors</li><li> Manage as G3 is no improvement in 24hr</li></ul>      |
| Grade 3<br>(+pressors)            | Tocilizumab<br>8mg/kg (4 doses<br>max) | Dex 10mg q6                                       | <ul><li>IV fluids, pressors,</li><li>Echocardiogram</li><li>ICU, oxygen</li></ul>           |
| Grade 4<br>(+ventilatory support) | Tocilizumab<br>8mg/kg (4 doses<br>max) | Dex 10mg q6<br>Methylpred 1g/day<br>if refractory | <ul><li>ICU care</li><li>Mechanical ventilation</li><li>Organ toxicity management</li></ul> |






Neelapu et al, *Nat Rev Clin Oncol* 2018 Thompson et al, *JNCCN* 2019, NCCN guidelines Lee et al, *Biol Blood Marrow Transplant 2018* 

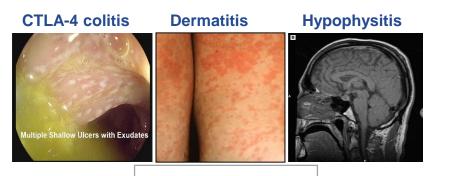



# CAR T-cell Therapy CAR T Neurotoxicity

- 'Immune effector cell Encephalopathy' (ICE score, 0-9)
- Orientation, naming, follow commands, writing, attention
- Rare cases of rapid-onset and lethal diffuse cerebral edema
- Can occur alone or with CRS

| Neurotoxicity Domain             | Grade 1                  | Grade 2          | Grade 3                     | Grade 4                                                                                           |
|----------------------------------|--------------------------|------------------|-----------------------------|---------------------------------------------------------------------------------------------------|
| ICE score                        | 7-9                      | 3-6              | 0-2                         | 0                                                                                                 |
| Depressed level of consciousness | Awakens<br>spontaneously | Awakens to voice | Awakens to tactile stimulus | Unrousable                                                                                        |
| Seizure                          | N/A                      | N/A              | Any clinical seizure/on EEG | Prolonged/life-<br>threatening seizure                                                            |
| Motor Findings                   | N/A                      | N/A              | N/A                         | Hemi or paraparesis,<br>deep focal motor<br>weakness                                              |
| Raised ICP/<br>cerebral edema    | N/A                      | N/A              | Focal edema on imaging      | Diffuse cerebral edema<br>on imaging, cranial N<br>palsy, Cushing's triad,<br>Decorticate posture |






- Severe neurotoxicity in 53 CAR-T B-ALL pts, associated with:
  - high pretreatment disease burden
  - higher peak CAR T-cell expansion in blood
  - early/higher pro-inflammatory cytokines in blood
  - grade and CSF protein levels, IL6, IL8, MCP1, and IP10
  - elevated levels of NMDA receptor agonists in CSF

Neelapu et al, *Nat Rev Clin Oncol* 2018 Thompson et al, *JNCCN* 2019, NCCN guidelines Lee et al, *Biol Blood Marrow Transplant 2018* 



### Key Milestones Immune-related Adverse Events



Anti-CTLA-4 Therapy

1893 1957 1992 1998 2006 2010 2011 2014 2015 2017 2019



# Immune-Related Toxicity General Management Principles

- Suspect an autoimmune toxicity
- Monitor for endocrine toxicities (TSH)
- Rule out competing diagnoses
   (?infection ?progression ? co-morbidity)
- Identify/Grade the toxicity
   (diarrhea vs. colitis; CTCAE grade)
- Consult an organ-specialist if needed

#### **Grade 1**:

-Supportive care
-Consider drug withhold

#### Grade 2:

- Withhold drug.

Low-dose corticosteroids
 (prednisone 0.5-1mg/kg/day/equivalent).
 -Consider re-dose if resolves < Grade 1.</li>

#### **Grade 3-4:**

Discontinue drug.

 High-dose corticosteroids

 (prednisone 1-2mg/kg/day/equivalent) taper over ≥ 4-6 weeks until ≤ Grade 1.

-Consider additional immunosuppression \*antiviral/fungal prophylaxis

Adapted from Naidoo et al, Ann Oncol 2015



### irAE Mechanisms

#### Translational Research

Colitis Myocarditis Increasing T-cell activity against Increasing levels of preexisting autoantibodies antigens that are present in tumors and healthy tissue **Autoreactive T-B-cells and** cells Autoantibodies Tumor with antigen. and activated T cells Increasing level of **Enhancing complement-mediated** inflammatory cytokines inflammation due to direct binding of an anti-CTLA-4 antibody with CTLA-4 expressed on normal tissue 5 **Target Tissue Cytokines** expression PDmediated 1, CTLA-4 pituitary

Hypophysitis
Thyroiditis
Skin toxicities
Neurologic irAEs

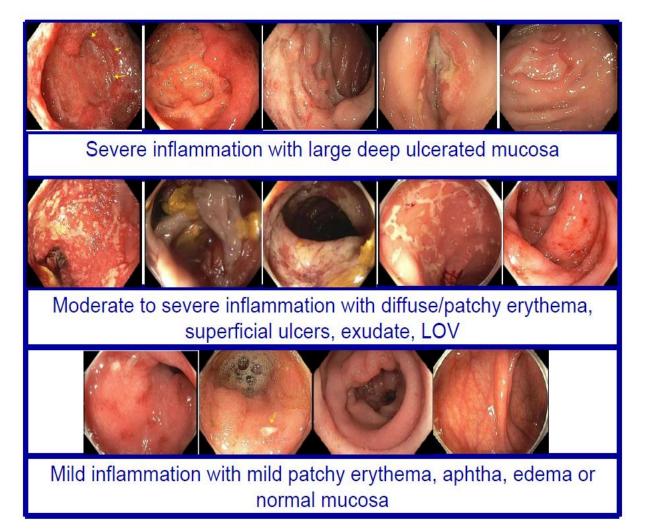
Severity and Timing irAEs

Type I DM Hypophysitis

Type I DM Arthritis

All irAE
Colitis
Dermatitis

Colitis


**Gut microbiome** 

**HLA/germline genetics** 

Postow et al, NEJM 2018



## CTLA-4 Inhibition Colitis



#### **Diagnostic Workup**

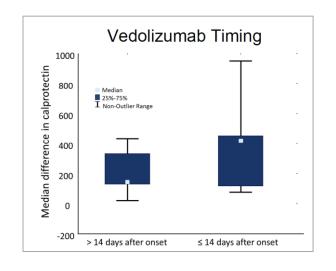
- -Rule out alternative diagnosis: C.difficile, other GI infections
- -Distinguish between diarrhea and colitis
- -Consider invasive testing with colonoscopy

#### **Management**

- -Low threshold for starting corticosteroids
- -No benefit for corticosteroid pre-treatment (budesonide)
- -Colitis that is slow to improve/refractory to steroids: treat with anti-TNF
- -Infliximab 5mg/kg once or twice q14 days

Wang et al, JITC 2018




## Steroid-Refractory CTLA-4 Colitis Lessons from IBD

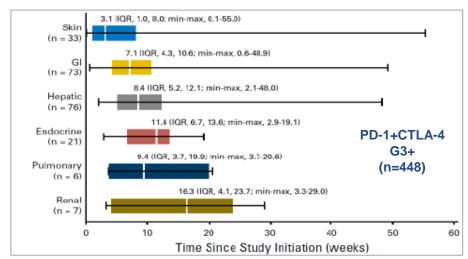
- Stool lactoferrin is a stool biomarker for colitis
- 90% concordance with histologic inflammation
- 70% sensitivity for endoscopic abnormality
- Stool calprotectin
- Associated with presence of ulcers on endoscopy

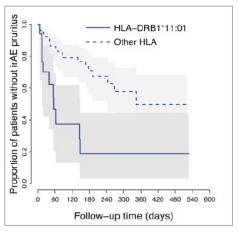
|                       | Lactoferrin (+)<br>N (%) | Lactoferrin (-)<br>N (%) |
|-----------------------|--------------------------|--------------------------|
| Abnormal<br>Scope     | 42 (70)                  | 4 (36)                   |
| Normal<br>Scope       | 18 (30)                  | 7 (64)                   |
| Abnormal<br>Histology | 54 (90)                  | 3 (27)                   |
| Normal<br>Histology   | 6 (10)                   | 8 (73)                   |

| Scope Findings            | Calprotectin (SD) |
|---------------------------|-------------------|
| Ulcers                    | 465 (363)         |
| Non-Ulcer<br>Inflammation | 213 (184)         |
| Normal                    | 152 (133)         |
| Р                         | 0.006             |

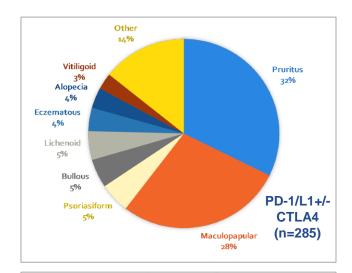
- High-risk features on endoscopy
- Associated with need for TNF-inhibition, hospitalization
- Vedolizumab
- Anti-integrin α4β7 mAb, used for IBD
- Responses in steroid-refractory CTLA-4 colitis, follow calprotectin

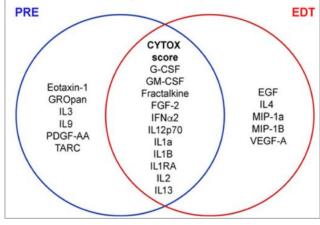



Wang, JITC 2018




## PD-1+/-CTLA4 Skin Toxicities


- First and most frequent irAE
- Phenotypically diverse
- <5% cases lead to treatment discontinuation
- Grading/severity based in BSA and presence of selected features\*
- Mechanisms
- HLA subtypes and cytokine panels may predict for cutaneous irAE


Santini, Cancer Immunol Res 2018 Phillips, J Clin Oncol 2019 Lim, Clin Can Res 2018 Ali, Eur J Cancer 2019



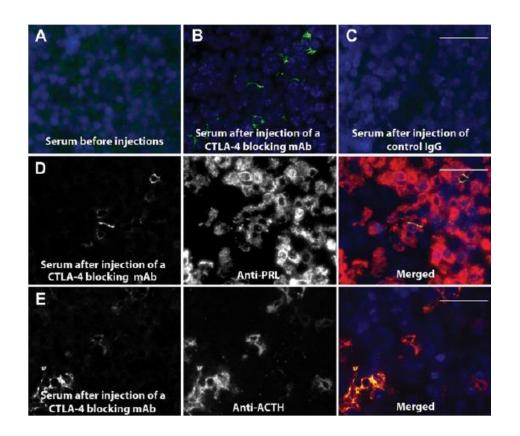








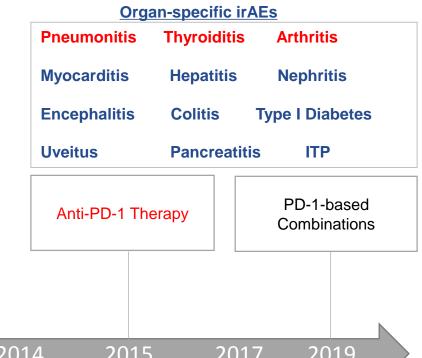
G3+ irAE (n=49)




# CTLA-4 Inhibition Hypophysitis

- Classic endocrine toxicity of ipilimumab
- Symptoms: fatigue, weakness, headache, confusion
- Develops 4 months from first cycle of finding low cortisol
- 75% abnormal MRI
- 60% abnormal TFTs

#### **Pathobiology**


- CTLA-4 expressed in pituitary
- Antibodies bind to pituitary cells after exposure to drug
- Deposition of complement/pathway activation
- Antibody bonding directly to pituitary cells
- Ipilimumab directly activates complement (IgG1)



Iwama et al, Sci Transl Med 2018

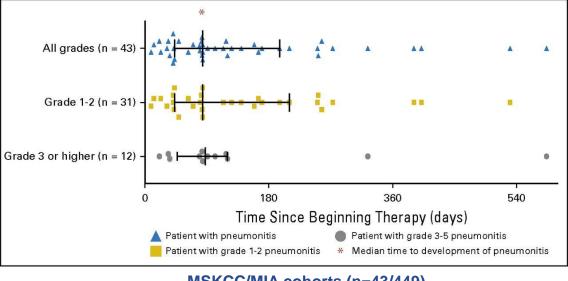


### Key Milestones Immune-related Adverse Events








## PD-1/PD-L1 Inhibition Pneumonitis



| Radiologic Subtypes                                                       | Representative Image |
|---------------------------------------------------------------------------|----------------------|
| Cryptogenic-<br>Organizing Pneumonia-<br>like<br>(COP-like)<br>(n=5, 19%) |                      |
| Ground Glass<br>Opacifications<br>(GGO)<br>(n=10, 37%)                    |                      |
| Interstitial Type<br>(n=6, 22%)                                           |                      |
| Hypersensitivity Type<br>(n=2, 7%)                                        |                      |
| Pneumonitis<br>Not-Otherwise<br>Specified<br>(n=4, 15%)                   |                      |

Timing is unpredictable

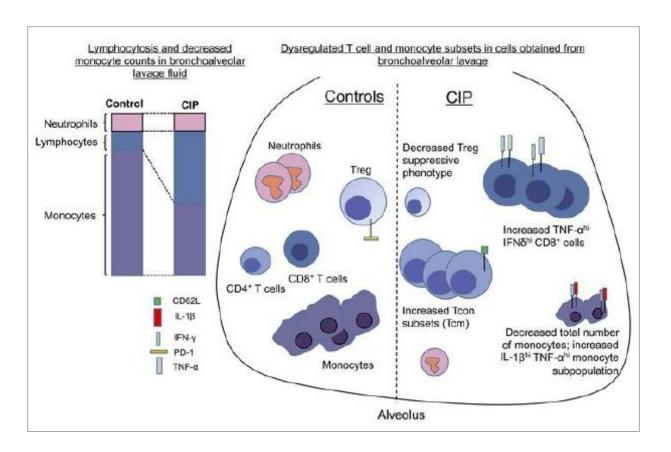
\*

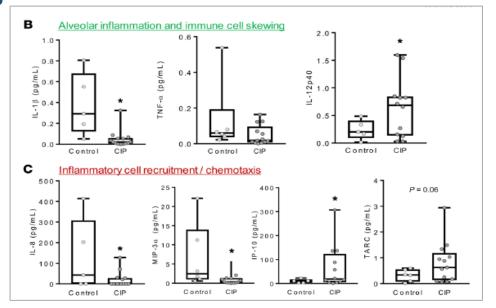


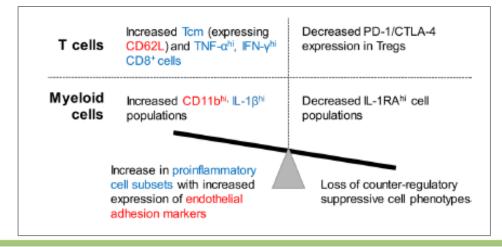
MSKCC/MIA cohorts (n=43/449)

Tumor histology is a risk factor

1.00 AC Non-AC


0.75 0.00 0.25 0.00 0 250 500 750 1000 Time


JHU Cohort (n=39/205)


Naidoo et al, *J Clin Oncol* 2016 Suresh, Naidoo et al, *J Thoracic Oncol* 2018



## PD-1/PD-L1 Inhibition Risk factors and T-cell mediated mechanisms





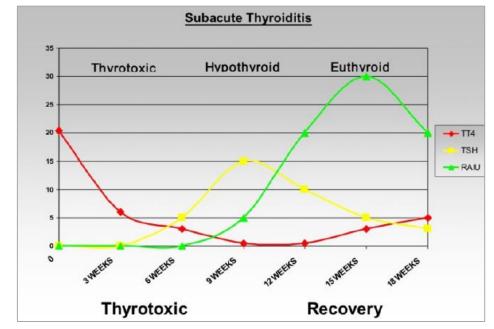


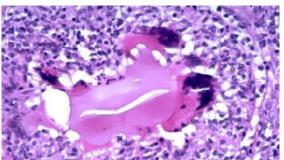
Suresh, Naidoo et al, J Clin Invest 2019

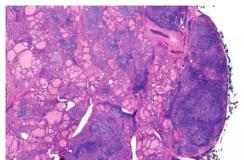


# PD-1/PD-L1 Inhibition Thyroiditis

#### **Hyperthyroid Phase**


- Leaky thyroid, Variable symptoms
- 2-6 weeks duration


#### **Hypothyroidism Phase**


- Recovery of depleted gland
- Symptoms: fatigue, hair and skin changes, fluid retention, constipation
- Transient or permanent

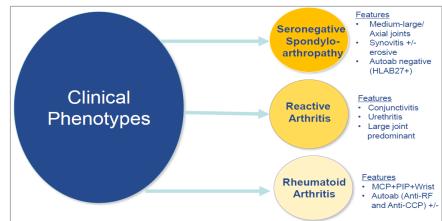
#### **Pathobiology**

- Lymphocytic infiltration of gland
- T-cell mediated
- Autoantibody mediated (50% of ab+ patients develop thyroiditis with nivolumab).





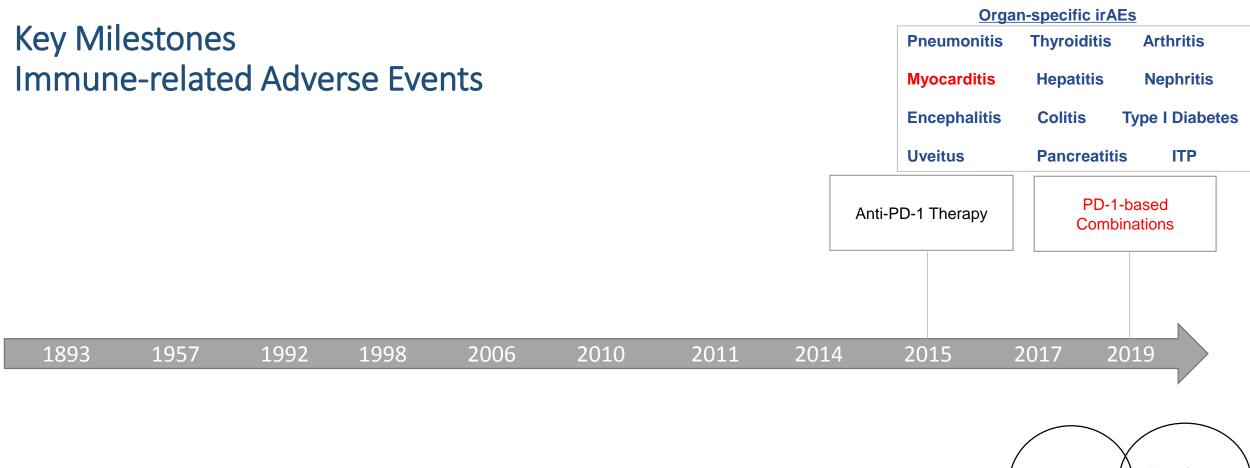


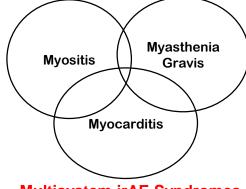

Kobayashi et al, J Endoc Soc 2018



# PD-1/PD-L1 Inhibition Rheumatologic irAEs

- Poorly recognized from RCTs
- Lack of standardized reporting (arthralgia, arthritis, joint pain, joint effusionaggregate >20%)
- Spectrum:
  - Sicca syndrome
  - Polymyalgia rheumatica/Giant Cell Arteritis
  - Myositis (dermatomyositis, polymyositis)
  - Single Organ Vasculitis
  - Psoriasis, Psoriatic arthritis
  - Scleroderma, others



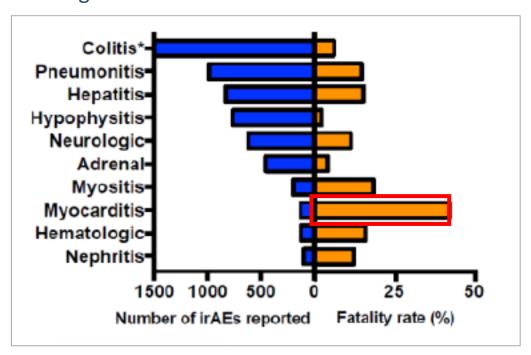




| HLA allele/s      | Odds Ratio (95% CI)<br>ICI-induced IA vs. controls | p−value* |
|-------------------|----------------------------------------------------|----------|
| A*03:01           | 2.2 (0.9, 5.1)                                     | 0.07     |
| B*08:01           | 0.9 (0.3, 2.6)                                     | 0.56     |
| B*15:01           | 2.2 (0.7, 5.9)                                     | 0.12     |
| B*27:05           | 0.6 (0.0, 4.0)                                     | 1.00     |
| B*52:01*          | 5.0 (0.5, 24.1)                                    | 0.08     |
| C*06:02           | 0.9 (0.3, 2.7)                                     | 1.00     |
| C*12:02**         | 5.4 (0.6, 26.8)                                    | 0.07     |
| DQB1*03:01        | 0.4 (0.1, 1.1)                                     | 0.06     |
| DRB1*03:01        | 1.1 (0.4, 2.9)                                     | 0.81     |
| DRB1*04:05        | 8.6 (1.7, 43.4)                                    | 0.04     |
|                   |                                                    |          |
| At least 1 Shared | 2.3 (1.0, 5.1)                                     | 0.04     |

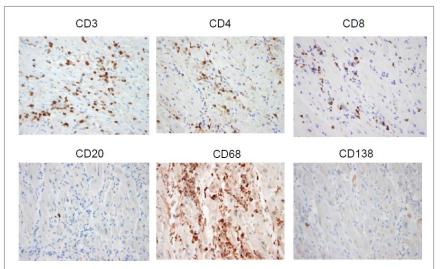
Cappelli et al, *Ann Rheum Dis* 2016 Kostine et al, *Ann Rheum Dis* 2018

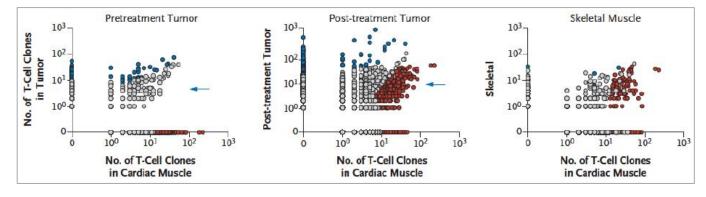










# PD-1/CTLA4 Combinations Myocarditis

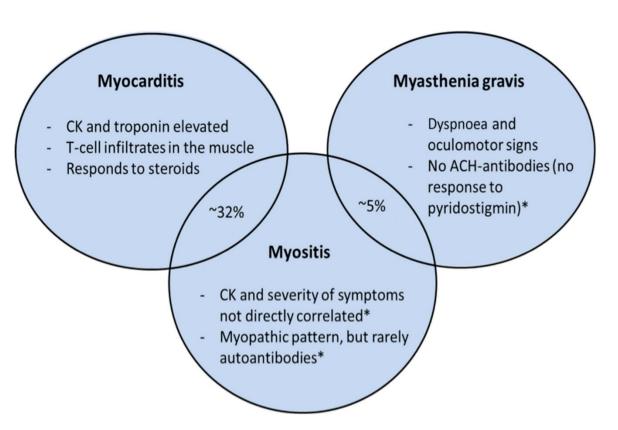
- Fatal toxicities are rare, 1.2%
- Myocarditis causes highest rate of fatality from combination ICI regimens



#### T-cell infiltrates in heart and skeletal muscle



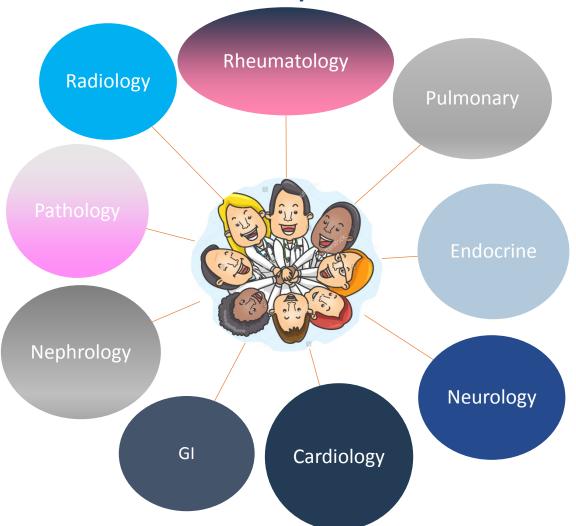



Johnson et al, *NEJM* 2016 Wang et al, *JAMA Oncol* 2018



# PD-1/CTLA4 Combinations Multisystem irAEs/Overlap syndromes

- 38 patients with metastatic skin cancers treated with ICI
- Myositis was the most frequent NM irAE
- 32% concomitant myocarditis.
- Time of onset: 1-115 weeks after the start of therapy
- 49% G3+
- 2 fatalities
- 50% ongoing
- Role for surveillance CKs
- Multidisciplinary IR- toxicity teams may facilitate identification
- 15% referred patients had multisystem irAEs


Moreira et al, *Eur J Cancer* 2018 Naidoo et al, *JNCCN* 2019



#### A Multidisciplinary Toxicity Team for Cancer Immunotherapy–Related Adverse Events

Jarushka Naidoo, MBBCh<sup>a</sup>; Jiajia Zhang, MD, PhD<sup>a</sup>; Evan J. Lipson, MD<sup>a</sup>; Patrick M. Forde, MBBCh<sup>a</sup>; Karthik Suresh, MD<sup>b</sup>; Kendall F. Moseley, MD<sup>c</sup>; Seema Mehta, MD<sup>d</sup>; Shawn G. Kwatra, MD<sup>e</sup>; Alyssa M. Parian, MD<sup>f</sup>; Amy K. Kim, MD<sup>f</sup>; John C. Probasco, MD, PhD<sup>a</sup>; Rosanne Rouf, MD<sup>h</sup>; Jennifer E. Thorne, MD, PhD<sup>i,j</sup>; Satish Shanbhag, MD<sup>a</sup>; Joanne Riemer, RN, BSN<sup>a</sup>; Ami A. Shah, MD<sup>k</sup>; Drew M. Pardoll, MD, PhD<sup>a</sup>; Clifton O. Bingham III, MD<sup>k</sup>; Julie R. Brahmer, MD, MHS<sup>a</sup>; and Laura C. Cappelli, MD, MHS<sup>k</sup>

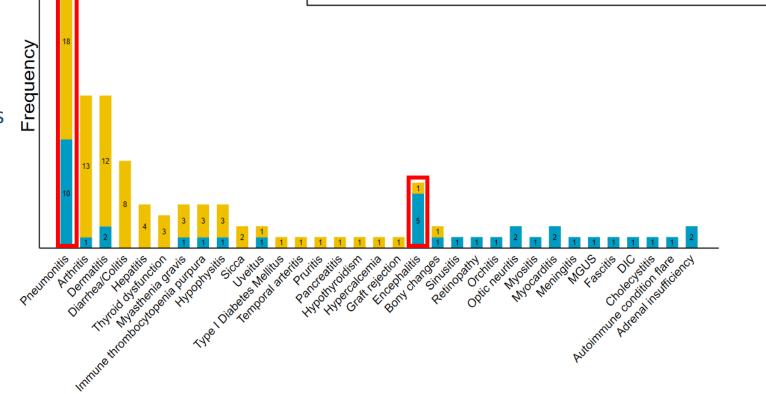




#### **Clinical Goals**

- •Centralize discussion of complex irAE cases
- •Discuss and refine guidelines
- Ordersets for irAEs

#### **Translational Goals**


- Examine serial biospecimens
- Propose prospective studies

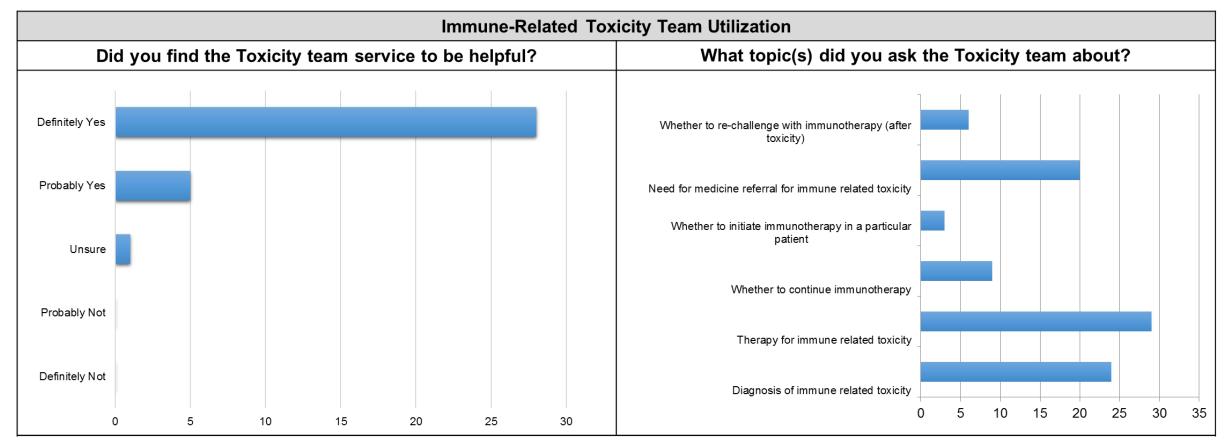
#### **Educational Goals**

- Teaching booklets
- Group masterclasses



- These data identify the toxicities with the greatest diagnostic dilemmas:
- pneumonitis
- neurologic irAEs
- These data identify the services most needed for this new group of patients
- Pulmonary
- Rheumatology
- Dermatology
- Endocrinology
- Gastroenterology
- neurology




Confirmed irAE

A new irAE of osteitis was identified

Naidoo et al, JNCCN 2019

No irAE/Unknown





97% of respondents (58/60) deferred to team recommendations
 MD= 35, NP/PA=7, RN=15, Other=4

Naidoo et al, JNCCN 2019



- 18 publications
- Pulmonary/Oncology (6)
- Rheumatology/Oncology (5)
- Endocrine/Oncology (1)
- Dermatology/Oncology (1)
- Gastroenterology/Oncology (3)
- Neurology/Oncology (1)
- Multidisciplinary Team (1)

#### **CLINICAL SCIENCE**

Immune checkpoint inhibitor-induced inflammatory arthritis persists after immunotherapy cessation

Tawnie J Braaten, <sup>1</sup> Julie R Brahmer, <sup>2</sup> Patrick M Forde, <sup>2</sup> Dung Le, <sup>2</sup> Evan J Lipson, <sup>2</sup> Jarushka Naidoo, <sup>2</sup> Megan Schollenberger, <sup>2</sup> Lei Zheng, <sup>2</sup> Clifton O Bingham III, <sup>1</sup> Ami A Shah, <sup>1</sup> Laura C Cappelli <sup>0</sup> <sup>1</sup>

#### A Multidisciplinary Toxicity Team for Cancer Immunotherapy–Related Adverse Events

Jarushka Naidoo, MBBCh<sup>a</sup>; Jiajia Zhang, MD, PhD<sup>a</sup>; Evan J. Lipson, MD<sup>a</sup>; Patrick M. Forde, MBBCh<sup>a</sup>; Karthik Suresh, MD<sup>b</sup>; Kendall F. Moseley, MD<sup>c</sup>; Seema Mehta, MD<sup>d</sup>; Shawn G. Kwatra, MD<sup>a</sup>; Alyssa M. Parian, MD<sup>f</sup>; Amy K. Kim, MD<sup>f</sup>; John C. Probasco, MD, PhD<sup>a</sup>; Rosanne Rouf, MD<sup>h</sup>; Jennifer E. Thorne, MD, PhD<sup>i</sup>; Satish Shanbhag, MD<sup>a</sup>; Joanne Riemer, RN, BSN<sup>a</sup>; Ami A. Shah, MD<sup>k</sup>; Drew M. Pardoll, MD, PhD<sup>a</sup>; Clifton O. Bingham III, MD<sup>k</sup>; Julie R. Brahmer, MD, MHS<sup>a</sup>; and Laura C. Cappelli, MD, MHS<sup>k</sup>

The Journal of Clinical Investigation

CLINICAL MEDICINE

## The alveolar immune cell landscape is dysregulated in checkpoint inhibitor pneumonitis

Karthik Suresh,¹ Jarushka Naidoo,² Qiong Zhong,¹ Ye Xiong,¹ Jennifer Mammen,⁴ Marcia Villegas de Flores,⁵ Laura Cappelli,⁵ Aanika Balaji,² Tsvi Palmer,¹ Patrick M. Forde,² Valsamo Anagnostou,² David S. Ettinger,² Kristen A. Marrone,² Ronan J. Kelly,² Christine L. Hann,² Benjamin Levy,² Josephine L. Feliciano,² Cheng-Ting Lin,⁵ David Feller-Kopman,¹ Andrew D. Lerner,¹ Hans Lee,¹ Majid Shafiq,¹ Lonny Yarmus,¹ Evan J. Lipson,³ Mark Soloski,⁵ Julie R. Brahmer,² Sonye K. Danoff,¹ and Franco D'Alessio¹

JAMA Neurology | Original Investigation

#### Association of Autoimmune Encephalitis With Combined Immune Checkpoint Inhibitor Treatment for Metastatic Cancer

Tanya J. Williams, MD, PhD; David R. Benavides, MD, PhD; Kelly-Ann Patrice, MBBS; Josep O. Dalmau, MD, PhD; Alexandre Leon Ribeiro de Ávila, MD, PhD; Dung T. Le, MD; Evan J. Lipson, MD; John C. Probasco, MD; Ellen M. Mowry, MD, MCR

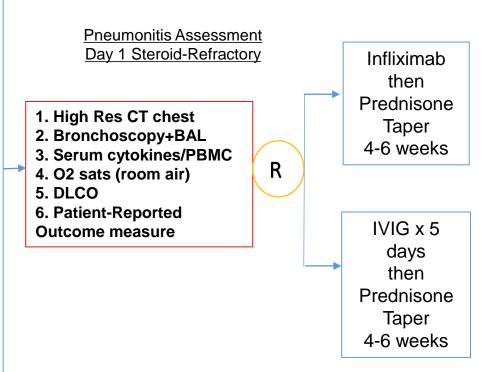


# Future Directions Prospective Studies for irAEs: Steroid-Refractory Pneumonitis

## Grade 2+ PD-1/PD-L1 Pneumonitis

Any malignancy

Any PD-1/PD-L1 agent


Pneumonitis not improved/resolved after 2-7 days of prednisone 1-2mg/kg/equivalent

No active infection

No radiologic evidence progressive cancer in lung

Pathogen-negative bronchoscopy

Recorded baseline O2 sat



Pneumonitis Assessment
Day 14 Steroid-Refractory

- 1. High Res CT chest
- 2. Serum cytokines/PBMC
- 3. O2 sats (room air)
- 4. DLCO
- 5. Patient-Reported Outcome measure



PI: Naidoo, ECOG-ACRIN Symptom Management, Lead: Kircher; Wagner

National Cancer Institute
Division of Cancer Prevention



### BLOOMBERG~KIMMEL INSTITUTE FOR CANCER IMMUNOTHERAPY

## Colleagues and Collaborators



#### JHH UAD Oncology Program

Julie R. Brahmer, MD Patrick M. Forde, MD Kristen Marrone, MD

#### JHH Melanoma Program

Evan J. Lipson, MD William Sharfman, MD

#### JHH Bloomberg Kimmel Institute

for Cancer Immunotherapy

Drew M. Pardoll, MD PhD Elizabeth M. Jaffee, MD PhD Suzanne Topalian MD

#### **Division of Endocrinology**

Jenna Mammen, MD Kendall Moseley, MD

#### <u>Division of Hematology</u> Satish Shanbhag, MD

Division of Cardiology Rosanne Rouf, MD Roberta Florido, MD

#### Division of Rheumatology

Laura Cappelli, MD Clifton O. Bingham, MD Alan Baer, MD Ami Shah, MD Antony Rosen, MD PhD Livia Casciola-Rosen, MD PhD

#### **Department of Neurology**

John Probasco, MD Lyle Ostrow, MD

#### <u>Division of Infectious Diseases</u>

Seema Mehta, MD

#### **Division of Gastroenterology**

Joanna Melia MD Alyssa Parian, MD

#### **Oncology Nursing**

Joanne Riemer, BN Trish Brothers, RN Maureen Berg, RN Anna Ferguson, RN



## IASLC INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER Conquering Thoracic Cancers Worldwide

#### **Pulmonary Medicine**

Franco D'Alessio, MD PhD
Karthik Suresh, MD PhD
Sonye Danoff, MD
M. Patricia Rivera, MD (UNC Chapel Hill)

#### **Division of Dermatology**

Inbal Sander, MD Shawn Kwatra, MD

#### Department of Ophthalmology

Meghan Berkenstock, MD Jennifer Thorne, MD PhD

#### **ECOG-ACRIN Symptom Science Committee**

#### **Funding Sources**

**Immunotherapy** 

NIH KL2
Lung Cancer Foundation of America
IASLC
Johns Hopkins University Seed Grants
Bloomberg-Kimmel Institute
for Cancer

