

University of Colorado Anschutz Medical Campus

Addressing Relapse after CART Cell Therapy for ALL

Terry J. Fry, M.D.

Professor of Pediatrics, Hematology and Immunology Robert and Kathleen Clark Endowed Chair in Pediatric Cancer Therapeutics Co-Director, Human Immunology and Immunotherapy Initiative and Director of Cancer Immunotherapy

Disclosures

• I have no actual or potential conflict of interest in relation to this presentation.

The CD22 CAR Experience: Lessons Learned from a First in Human Trial

Haso...Orentas, Blood 2013 Haso....Fry, ASH 2013 Fry/Shah et al., Nature Medicine 2017

Subject ID

CD22 BBz CAR: Relapse associated with CD22 modulation

Days post CD22 CAR T-Cells (first infusion)

Impact of manufacturing change on in vitro expansion and post-infusion cytokine levels

Steve Highfill

Interrogating CAR Immune Biology in an immune competent model of ALL

Kazusa Ishii

Syngeneic CAR Mouse Model Provides Insights into CAR T cell Toxicity

HLH/MAS in CD22 CAR Trial

Patterns of Failure Following CAR T cells for ALL

Structural and physical differences exist between CARs and endogenous TCRs

Hillerdal et al. BioDrugs, 2015

CAR Signaling: Redirection or Reprogramming?

Eric Kohler

CAR-mediated activation results in more robust in vitro killing but less efficient at clearing leukemia in vivo

CAR-stimulation leads to sustained proximal signaling, enhanced activation of the NF-kB pathway, but less MAPK activation relative to TCR-stimulation

CAR activated T cells show less persistence that is more antigen dependent

Structural and physical differences in CARs relative to TCRs results in unique signaling, that correlates with altered *in vivo* biology and potency

Site Density Affects CD22 CAR Function and Signaling

Sneha Ramakrishna

Ramakrishna, Clin Can Res, 2019

Patterns of Failure Following CAR T cells for ALL

Achieving Uniform Expression of Two CARS using Bicistronic Vectors

Translation

CD3z

CD3z

CD19 CAR

Haiying Qin

Dual CAR expressing T cells mediate potent single antigen activity

D0: 1E5 NALM6-CD19KO + 1E5 NALM6-CD22KO + 1E5 NALM6

Signal integration in Dual CAR Expressing T cells results in distinct profiles depending on binder/costim combinations

22-BB/19-28

22-28/19-BB

GFP: Nalm6 ALL Red: CD22 CAR Blue: CD19 CAR

Leukemic evolution in the context of targeted Immunotherapy can be complex

Jacoby et al, Nature Communications, 2016

CD19

KMT2A-R ALL, but also reported in other subtypes.

Gardner et al, Blood, 2016

Pre-CD19 CAR

Post-CD19 CAR

Preclinical Activity of FLT3R CAR T Cells (CD135CART)

Hypothesis: Targeting cytokine receptors in high-risk leukemia subtypes will decrease likelihood of antigen loss

CD135 Surface Antigen Density 15000-10000-

20000-

2000

1500-

1000-

500[.]

NOL AML

ALL

Chris Chien

In Vivo CD135CART Activity in *KMT2A*-R ALL PDX Models

KMT2A-MLLT3 infant ALL PDX

KMT2A-AFF1 adult ALL PDX

John Chukinas, Tasian lab

Here, it's different."

Children's Hospital of Philadelphia **G**

In Vivo CD135CART Activity in Lineage Switch Models

KMT2A-R ALL PDX

Here, it's different.

KMT2A-R AML PDX (lineage switch after CD19CART)

Summary

- Single antigens comparable to CD19 will be difficult (Impossible?) to find
- Antigen modulation as well as more complex patterns of cancer resistance will frequently emerge
- Current CAR formats do not fully recapitulate T cell biology
- Details matter construct design, manufacturing, target antigen, disease

Acknowledgments

NCI, Pediatric Oncology

Branch and CPS

Nirali Shah

Chris Chien

Haiying Qin

Cindy Delbrook

Bonnie Yates

Haneen Salabi

Dave Stroncek

Steve Highfill

Jack Shern

Fry Lab

- Amy Yang •
- Eric Kohler
- Savannah Ross •
- Jen Cimons •
- Zach Walsh •
- Lillie Leach •
- **Christine Meadows** •
- Michael Yarnell •
- Kole DeGolier •
- Zach Graff •

Tasian Lab, CHOP

- Asen Bagashev, PhD
- John Chukinas, BS ٠
- David Hottman, PhD .
- Yong Li, MD MS
- JP Loftus, BS ٠
- Lisa Niswander, MD PhD ٠
- Feng Shen, MD PhD ٠

CHILDREN'S ONCOLOGY GROUP Foundation

& MARROW TRANSPLANT RESEARCH