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A quick introductory tutorial on
Artificial Intelligence,
Machine Learning,
and ‘Big Data’
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Motivation: Enhance capabilities for prediction and insight in immune system-
related pathologies and therapeutics based on intensive and extensive

molecular / cellular experimental interrogation
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Lymphatic endothelial cells
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Murine-derived tumor cell line  Immune-competent mice

B Genetically engineered models

Tissue-specific
genetic mutation

-

Immune-competent mice

C Patient-derived xenograft models
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Immune-deficient
NOD/SCID mice

[Olsen, Canc Disc (2018)]
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Artificial Intelligence — categories

» EXxpert Systems
= ‘forward engineering’
* ’rules-based’
* ‘knowledge-based’
* ‘hypothesis-based’
» Machine Learning
= ‘reverse engineering’
= ‘data-driven’
* ‘hypothesis-generating’

[Davis,
AAAI Al Magazine
(1982)]
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Expert Systems
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Machine Learning
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Artificial Intelligence — categories

For most problems rooted In
bioscience Expert Systems
approaches do not work well,
because the Rules are
Inadequately grounded In either
theory or knowledge

» EXxpert Systems
= ‘forward engineering’
= ’rules-based’
» ‘knowledge-based’
= ‘hypothesis-based’
» Machine Learning
= ‘reverse engineering’

Thus, Machine Learning is

= ‘data-driven’
generally the more useful

[Davis,

AAAI Al Magazine approach (although hybrid

= ‘hypothesis-

o, (1982)]
generating frameworks may be helpful)
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Machine Learning Example

» Example: Image Recognition

" reverse engineering = determining how pixel data are related to object
categories

= data-driven = large number of training images to develop pixel-object
relationships

* |nputs = image pixels

= OQutputs = likelihood of image showing a particular category of object

» Model = parameters quantifying relationships among measured and
derived features
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CAT

stuffed toy 0.799

plush 0.763

emsel | mmt LT et - snout 0.693
- 1 textile 0.682

fur 0.678

animal 0.612

dog like mammal 0.504
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Differences from Traditional Biostatistics

» traditional Biostatistics focus is on Yes-vs-No
hypothesis testing, whereas Machine Learning focus
IS on input-output relationship modeling

» traditional Biostatistics permits 'power calculations’
(concerning Yes-vs-No questions), whereas Machine
Learning instead employs cross-validation and
randomization techniques for ascertaining confidence
In and significance of results
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Differences from Traditional Multi-Variate Analyses

» traditional multi-variate analyses generally assume that input
variables are independent — I.e., no co- or anti-correlations
among them

» Machine Learning methods generally accommodate co-
variation among input variables — indeed, they view this is as a
typical characteristic feature of system to be discerned

= ‘dimensionality reduction’ is sought, in which co-correlated
variables provide ‘latent variables’, or “features”
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Dimensionality Reduction to generate ‘Latent Variables’

Individual
Variable

Find combinations of
individual variables
exhibiting substantive
co-/anti-correlations,
to construct
‘latent variables’

Often, few clear and strong
univariate relationships
between individual independent
variables and dependent variable ‘tumor response’

across full set of samples _
Low BN | High
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Data Characteristics

» Types
* Molecular — genomic, transcriptomic, proteomic, ...
= Cellular —types, phenotypic functions, ...
= Physiological — sensitive-vs-resistant to treatment, ...

> Amounts ‘Big Data?’ is
= Measurements — O(10%) cell types / functions, O(102) generally viewed
proteomic, O(103) transcriptomic, O(10%) genomic [SNPs] as ~ O(10°)
= Samples — O(101)-0(102) lab / clinical studies, O(103)- In samples and
0O(10%) genomic data-bases > 0(10%) in
» Geometry — relationship between Measurement amounts measurements

and Sample amounts // the most important characteristic
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Data -- Geometry

» # Samples >> # Independent Variables —
“fat” data; can result in ‘under-fitting’

» # Samples << # Independent Variables —
“thin” data; can result in ‘over-fitting’

> # Samples ~ # Independent Variables — “just
right”’; generally desirable V

Under-fitting
(too simple to :
explain the Over-fitting
variance)
(forcefitting - too
good to be true)
‘fitting’ = model
Appropriate-fitting parameter
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“Thin” Data Geometry is Most Common

» Consequence is requirement for ‘feature selection’, or
regularization
» Regularization reduces number of variables used in
model

o Robustness of prediction is enhanced, by preventing V

‘over-fitting’ s

o Insight is impaired, because relatively small number of
variables renders mechanistic interactions difficult to

ascertain
o Computational pipeline often then includes an ensuing
algorithm to identify pathways / processes enriched in the

selected variables
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Data — Amount vs Type

Cancer cell data used to identify effective targeted
therapeutics or responsive patient subsets

Low

Basal signaling state
[TCGA; Niepel etal. (4)]

Oncogenic driver mutations

Genetics-based subtypes

Inducible signaling st: Sig yn : ‘Genetic heterogeneity
[Niepe eta' 1) liepel et al. (4), Kirouac et al. (5)1 (clonal evolution)
Sachsetal. (11)]

Signaling network architecture
[Kirouac et al. (5), Sachs et al. (11)]

Gene expression
response dynamics

Dynamic cellular responses

Genetic control systems

(network biology)
Cellular response

heterogeneity

Complexity

[Quaranta & Tyson, Science Signaling (2013)]
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environmental context
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The more proximal data-type iIs to
biology / physiology, the more meaningful (and
actionable) information it represents
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Landscape of computational methods that can be pursed in
machine learning manner — preference depends on data and goals

Influences
topology [

relationships

_
Increasing extent of prior knowledge used along with empirical data
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SPECIFIED [ ABSTRACTED adapted from
I L Ideker &
differential | Lauffenburger,
. Trends in
cquations | fBooIer n / mutual Biotechnology
[ I tzzy logic Bayesian information, [2003]
_ | networks correlation classification,
mechanisms networks regression,
I logic neural networks,
I random forests
[
[




Example Immune System Applications
-- Lauffenburger laboratory research

» Chung et al, Cell [2015] - identification of HIV immune response correlates in clinical trials

» Moynihan et al, Nature Medicine [2016] — analysis of processes underlying effects of
diverse tumor immunotherapy approaches

» Ackerman et al, Nature Medicine [2018] — elucidation of mechanism differences between
HIV vaccine administration routes

» Kumar et al, Cell Reports [2018] — modeling single-cell RNAseq data in tumor
microenvironment

» Brubaker et al, PLoS Computational Biology [2019] — principled framework for translation
between mouse and human pathophysiology

» Yu et al, JCI Insight [2019] — prediction of most effective antibody combination treatments
for given HIV reservoir sequence distribution
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