

ADVANCES IN

Cancer

Immunotherapy for the Treatment of Hematologic Malignancies

Amer Zeidan, MD, MHS

Associate Professor of Medicine Director of Hematology Early Therapeutics Research Yale University School of Medicine Yale Cancer Center

Dr_AmerZeidan

#LearnACI

Society for Immunotherapy of Cancer

© 2020–2021 Society for Immunotherapy of Cancer

- Consulting Fees: Celgene/BMS, Abbvie, Pfizer, Boehringer-Ingehleim, Trovagene, Incyte, Takeda, Novartis, Otsuka, Jazz, Agios, Acceleron, Astellas, Daiichi Sankyo, Cardinal Health, Taiho, Seattle Genetics, BeyondSpring, Ionis, Epizyme
- Contracted Research: Celgene/BMS, Abbvie, Astex, Pfizer, Medimmune/AstraZeneca, Boehringer-Ingelheim, Trovagene, Incyte, Takeda, Novartis, Aprea, ADC Therapeutics
- I will be discussing non-FDA approved indications during my presentation.

Outline: Major immunotherapies under development

- Immune checkpoint inhibitors
- Antibody-drug conjugates
- Bispecifics
- Cellular therapies

Interaction of leukemic blasts and immune cells in the bone marrow niche as (Sitc) Society for Immunotherapy of Cancer targets for immune checkpoint-mediated therapy ADVANCES IN 🥠 Cancer IMN PF-04518600 - OX40 4-1BB LAG-3 TIM-3 MBG453-**T-cell** Macrophage Ipilimumab TCR Hu5F9-G4 CTLA-4 MHC-I/II Anti-PD1 PD-1 SIRPa CD80/ **CD86 CD47** TCR HMA PD-L1 **CD28** MHC-I/II TTI-621 Anti-PD-L1 **B7 Myeloid blast** APC CD27 APC **CD70** PD-L1 NK-PD-1 Durvalumab Cusatuzumab Avelumab cell Pembrolizumab Nivolumab **Green: Stimulatory Red:** Inhibitory AMERICAN ACADEMY OF EMERGENCY MEDICINE ACCC

FDA approved indications of immune checkpoint inhibitors in United States

Squamous Cell Head & Neck Cancer 1L/2L nivolumab after platinum chemotherapy 1L/2L pembrolizumab after platinum chemotherapy

> <u>Malignant Melanoma</u> Adjuvant/1L ipilimumab 1L nivolumab ± ipilimumab Adjuvant nivolumab 1L pembrolizumab

<u>Merkel Cell Carcinoma</u> 2L avelumab <u>Cutaneous Squamous Cell Carcinoma</u> 1L cemiplimab

> Hepatocellular Carcinoma 2L nivolumab after sorafenib 2L pembrolizumab after sorafenib

Adv. Renal Cell Carcinoma 1L nivolumab plus ipilimumab 2L nivolumab after anti-angiogenic therapy

MSI-H or dMMR Cancers 2L nivolumab in CRC 2L nivolumab plus ipilimumab in CRC 2L pembrolizumab in any MSI-H/dMMR cancer

> <u>Cervical Cancer</u> 2L pembrolizumab CPS≧1

 Small Cell Lung Cancer

 3L nivolumab

 Non-Small Cell Lung Cancer

 1L pembrolizumab TPS≧50%

 1L pembrolizumab + pemetrexed & platinum-salt in

 non-squamous NSCLC

 1L pembrolizumab + carboplatin & (nab-)paclitaxel in

 squamous NSCLC

 1L atezolizumab + bevacizumab, paclitaxel & carboplatin in non-squamous NSCLC

 2L pembrolizumab TPS≧1%

 2L nivolumab

 2L atezolizumab

 Maintenance durvalumab after chemoradiation

<u>Gastric & GEJ Carcinoma</u> 3L pembrolizumab after fluoropyrimidine- and platinum-chemotherapy +/- HER2 therapy & CPS≧1

Classical Hogdkin Lymphoma 4L pembrolizumab 3L nivolumab after auto-HSCT and BV 4L nivolumab and after auto-HSCT

PMBCL 3L pembrolizumab

Locally Adv. or Met. Urothelial Cancer

1L/2L nivolumab after platinum chemotherapy 1L/2L pembrolizumab 1L/2L atezolizumab after platinum chemotherapy 1L/2L avelumab after platinum chemotherapy 1L/2L durvalumab after platinum chemotherapy

FDA-approved checkpoint inhibitors: lymphoma

Drug	Indication	Dose
Nivolumab	Classical Hodgkin lymphoma , relapsed after HSCT and brentuximab vedotin or ≥3 previous therapies	240 mg Q2W or 480 mg Q4W
Pembrolizumab	Adult/pediatric refractory classical Hodgkin lymphoma or relapsed after 3 previous therapies	200 mg Q3W or 400 mg Q6W adults 2 mg/kg (up to 200 mg) Q3W (pediatric)
Pembrolizumab	Adult/pediatric refractory primary mediastinal large B-cell lymphoma or relapsed after 2 previous therapies**	200 mg Q3W or 400 mg Q6W adults 2 mg/kg (up to 200 mg) Q3W (pediatric)

**Not recommended for patients with PBMCL that require urgent cytoreductive therapy.

Efficacy of approved checkpoint inhibitors: lymphoma

Study	Treatment	Patient population	Overall response rate	Complete response rate	Landmark OS
CheckMate 205	Nivolumab	Brentuximab vedotin-naïve cHL	65%	29%	1-year: 92%
		Bretuximab vedotin after auto-HCT cHL	68%	13%	1-year: 93%
		Bretuximab vedotin before/after auto-HCT cHL	73%	12%	1-year: 90%
KEYNOTE-087	Pembrolizumab	cHL progressed after ASCT and BV	78.3%	26%	3-year: 86.3%
		cHL after salvage chemo and BV, ineligible for ASCT	64.2%	26%	3-year: 85.7%
		cHL progressed after ASCT without BV treatment	71.7%	31.7%	3-year: 87.6%
KEYNOTE-013	Pembrolizumab	PMBCL with relapse/ineligible for ASCT	48%	33%	1-year: 65%
KEYNOTE-170	Pembrolizumab	PMBCL ineligible for ASCT with progression on <u>></u> 2 previous therapies	45%	13%	1-year: 58%

cHL: Classical Hodgkin lymphoma; PMBCL: primary mediastinal B cell lymphoma

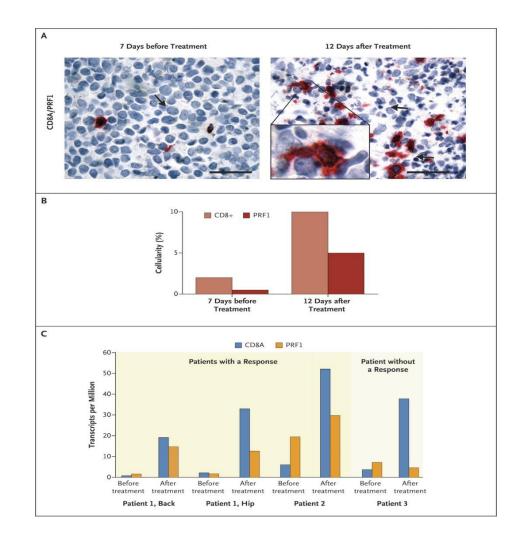
ACCC 🚸 HOPA

sitc

Society for Immunotherate of Cance

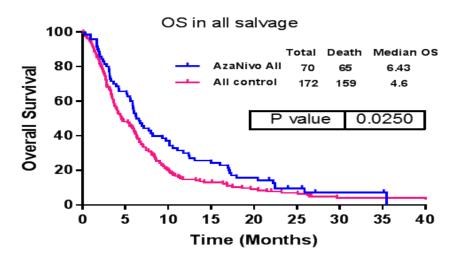
© 2020–2021 Society for Immunotherapy of Cancer

In development: Immune checkpoint inhibitors in AML

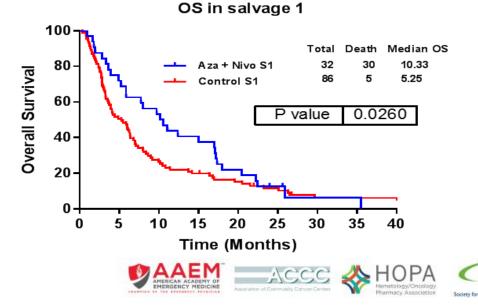

Study	Population	Treatment(s)	ORR	Median OS (months)	Status
NCT02775903	Untreated AML	Azacitidine + durvalumab	20%	13.0	Active, not
		Azacitidine	23%	14.4	recruiting
NCT02397720	Relapsed/refractory AML	Azacitidine + nivolumab	33%	6.4	Recruiting
		Azacitidine + nivolumab + ipilimumab	44%	10.5	
NCT02768792	Relapsed/refractory AML	HiDAC followed by pembrolizumab	46%	8.9	Active, not recruiting
NCT02845297	Relapsed/refractory AML	Azacitidine + pembrolizumab	31%	10.8	Recruiting
	Newly diagnosed AML, <u>>65</u> years of age		70.5%	13.1	

Ipilimumab for Relapsed Hematologic Malignancies after AlloHSCT: A Multicenter Phase I/Ib Study

- 28 patients following allo-SCT; AML=12
- Ipilimumab at: 3 mg/Kg or 10 mg/Kg, every 3 weeks
- Median time from allo-SCT was 19.3 months (late postSCT)
- Efficacy in patients at the higher dose level (5/13 AML CR, median: 3 prior Rx)
- Extramedullary AML more sensitive?
- 6 (23%) cases of immune AE, 1 death

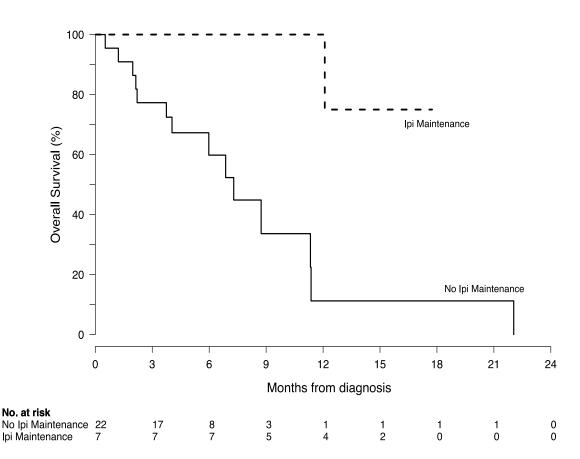


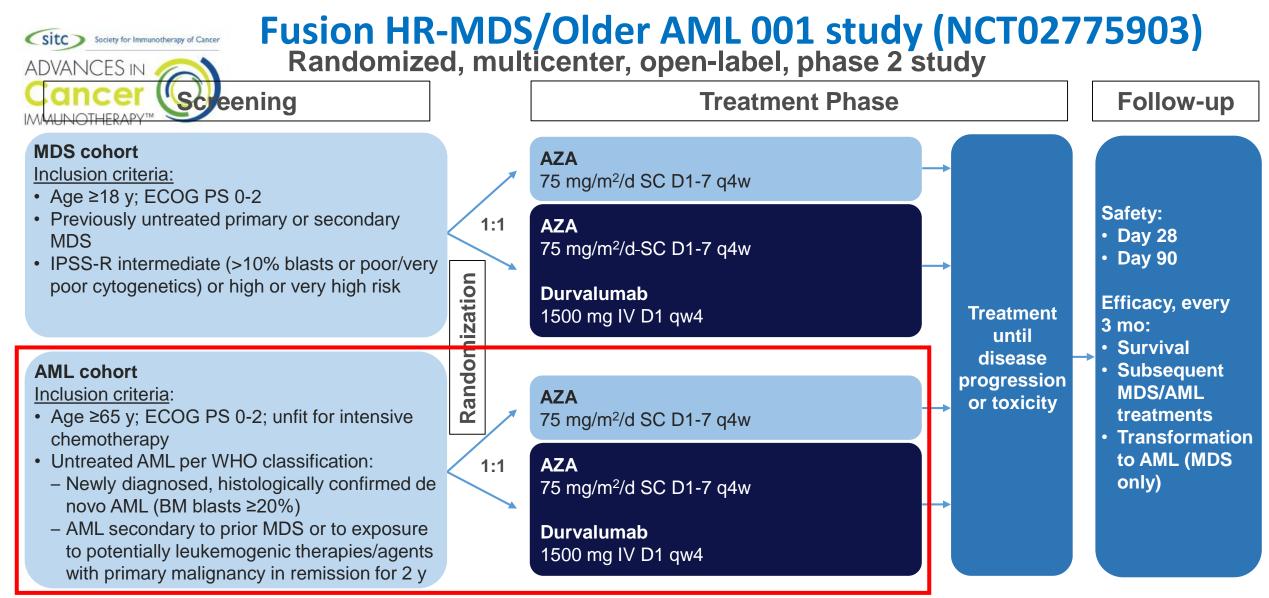
Azacitidine + Nivolumab in Relapsed AML A Phase Ib/II Study: Responses and survival


Table 2. Best response for azacitidine + nivolumab patients (N = 70) and for historic HMA-based clinical trial control (N = 172)

	N (%); median (range)		
Bestresponse	Azacitidine/nivolumab	Control	
Overall response rate	23 (33)	35 (20)	
CR	4 (6)	17 (10)	
CRi/CRp	11 (16)	15(9)	
PR	1(1)	1(1)	
HIª (6 months+)	7 (10)	2(1)	
Stable disease (6 months+) ^b	6 (9)	NA	
Nonresponders	41 (58)	131 (76)	
Median cycles to response	2 (1-13)	2 (1-6)	
Median follow-up, in months	13.3 (8.2-25.5)	51 (0.1-64.8)	

Daver N, et al. Cancer Discovery 2018. 2. Stahl M,,, Zeidan A, Blood Advances 2018. 3. DiNardo, Am J Hematol 2018 © 2020–2021 Society for Immunotherapy of Cancer


- How does this compare to HMA's in R/R AML?
 - Single agent Aza/Dec (n=670) in HMA-naïve pts- ORR = 23%, CR/CRi rate = 16%²
 - Aza/Dec + Ven: CR/CRi 21%³



Ipilimumab can cause prolonged disease stabilization in some patients with refractory MDS

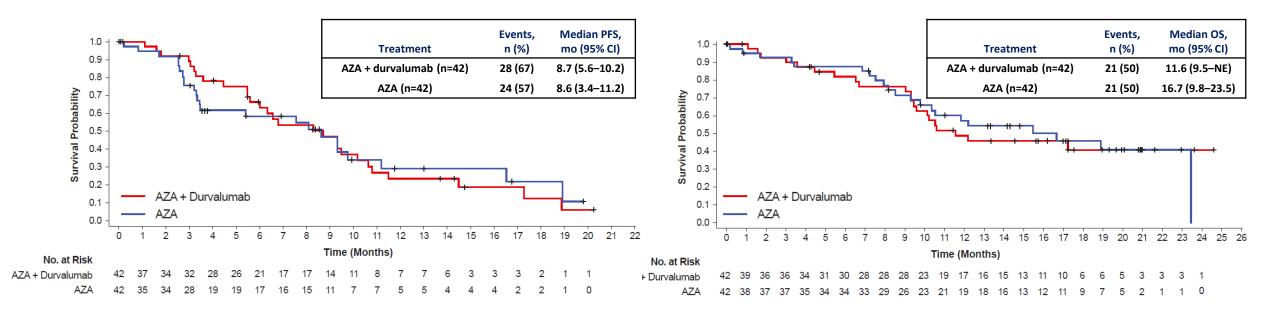
- 29 pts from Yale and 5 other centers
- DL1 (3mg/kg): 3 of 6 pts had G2-4 IRAEs
- DL2 (10mg/kg): 4 of 5 pts had G2-4 IRAEs
- DL1 expanded with no G2-4 IRAEs reported in 18 additional patients.
- All IRAEs were reversible with drug discontinuation or systemic steroids.
- Best responses: mCR in one patient (3.4%).
 Prolonged stable disease (PSD) for ≥46 weeks (7 pts including 3 with > 1 year).
- 5 pts underwent alloBMT without excessive toxicity.
- Median survival for the group was 9.8 months (294 days, 95%CI, 240-671+).

Last patient randomized: MDS, October 30, 2017; AML, September 29, 2017. Data cutoff: October 31, 2018
 BM, bone marrow; ECOG, Eastern Cooperative Oncology Group; IPSS-R, Revised International Prognostic Scoring System; PS, performance status; SC, subcutaneous; WHO, World Healath Organization.

Zeidan AM et al., ASH 2019; Abstract #829

(sitc) Society for Immunotherapy of Cancer

ADVANCES IN


Fusion 001: Response and survival, AML Cohort (ITT Population*)

Response, n (%) [95% Cl]	AZA + Durvalumab	AZA	
	n=64	n=65	
ORR (CR + CRi)	20 (31.3) [19.9, 42.6]	23 (35.4) [23.8, 47.0]	
	<i>P</i> =0.6180)	
CR	11 (17.2) [7.9, 26.4]	14 (21.5) [11.5, 31.5]	
CRi	9 (14.1) [5.6, 22.6]	9 (13.8) [5.5, 22.2]	
PR	4 (6.3) [0.3, 12.2]	2 (3.1) [0, 7.3]	
SD	23 (35.9)	21 (32.3)	
PD	3 (4.7)	3 (4.6)	
NE/Missing, ⁺ n (%)	12 (18.8)	15 (23.1)	
PFS	AZA + Durvalumab AZA AZA	AZA + Durvalumab — AZA	
have been a second	Treatment n (%) mo (95% Cl) ↓ 0.7 AZA + Durvalumab (n=64) 46 (72) 8.1 (6.1–9.0) 0.6 0.6 0.6 0.5 0.	AZA + Durvalumab (n=64)	Events, n (%) Media mo (9) 42 (66) 13.0 (10) 39 (60) 14.4 (10)
The second secon			
2 3 4 5 6 7 8 9 10 11 12 13 14 Time (Months) 55 47 40 37 34 27 25 19 16 12 9 6 2		3 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Time(Months) 0 39 37 32 29 25 22 17 16 14 13 10 7 4 3 2 1 1	
	ORR (CR + CRi) CR CRi PR SD PD NE/Missing, ⁺ n (%) PFS PFS CRi PFS CRi PFS CRi PFS CRi PFS CRi CRi CRi PR SD PD NE/Missing, ⁺ n (%)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

PFS and OS in patients with MDS (ITT POPULATION)

Progression-Free Survival*

Overall Survival[†]

 Caution should be used when interpreting results because of the high number of censored patients

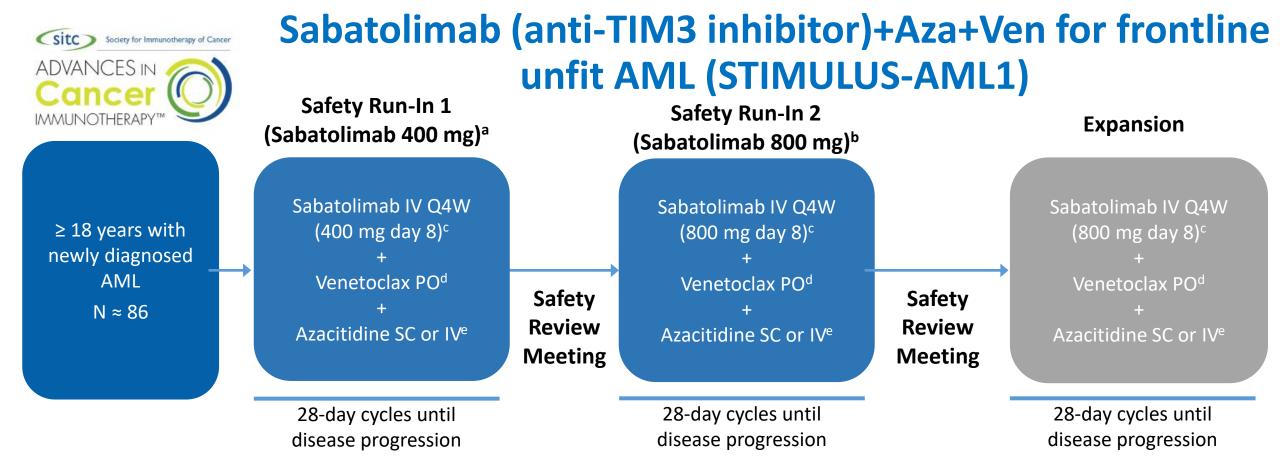
*Approximately 33% (combination therapy) and 43% (monotherapy) of patients censored. †Approximately 50% of patients censored. Data cutoff: October 31, 2018.

(sitc)

ADVANCES IN

IMMUNOTHERAPY'

Society for Immunotherapy of Cancer


Induction phase

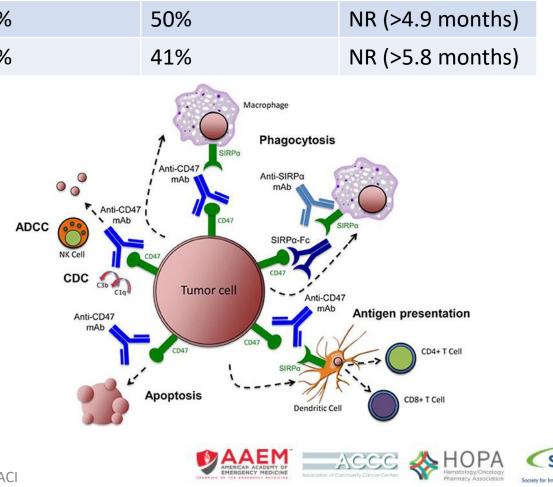
Consolidation/maintenance phase

Study SC chair: Amer Zeidan

Zeidan A, et al, ASH 2020

^aRequires 3–6 evaluable patients to have been observed for ≥ 2 cycles. ^bRequires ≥ 9 evaluable patients to have been observed for ≥ 2 cycles. ^cApproximately 6 patients will be enrolled at a starting dose level of 400 mg Q4W. Provided this starting dose is determined to be safe, approximately 12 patients will be enrolled at a dose level of 800 mg Q4W. Each cohort requires evaluable patients to have been observed for ≥ 2 cycles. ^d400 mg daily (following ramp-up). ^e75 mg/m²/day, days 1-7, or days 1-5 + days 8-9, or days 1-6 + day 8.

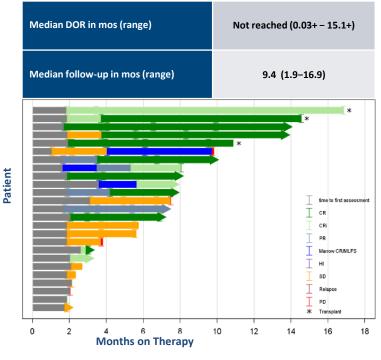
AML, acute myeloid leukemia; IV, intravenously; PO, orally; Q4W, every 4 weeks; SC, subcutaneously.


Zeidan A, et al, SOHO and EHA 2020

In development: Macrophage checkpoint: CD47

Treatment	Populations	ORR	CRR	Median DOR
Azacitidine +	Untreated MDS	91.7%	50%	NR (>4.9 months)
magroliumab	Untreated AML	63.6%	41%	NR (>5.8 months)

- CD47 is expressed on some cancer cells
- CD47 signaling through SIRPα prohibits macrophage phagocytosis of cancer cells – "don't eat me"
- Blocking interaction of CD47 and SIRPα promotes adaptive immune responses and boosts tumor cell phagocytosis


Patient Characteristics

Characteristic	1L AML Magro + AZA (N=29)
Median age in years (range)	74 (60–89)
ECOG Performance Status: 0	7 (24%)
1	20 (69%)
2	2 (7%)
Cytogenetic Risk: Favorable	0
Intermediate	2 (7%)
Poor	21 (72%)
Unknown/missing	6 (21%)
WHO AML classification: MRC	19 (66%)
Therapy related	3 (10%)
Harboring a TP53 mutation	13 (45%)

Magrolimab Combined with Azacitidine is Effective in Untreated AML Patients Unfit for Intensive Chemotherapy Including TP53 Mutant

Efficacy: Response Best Overall 1L AML **TP53 Mutant** Response N=25 N=12 ORR 16 (64%) 9 (75%) CR 10 (40%) 5 (42%) CRi 4 (16%) 4 (33%) PR 1 (4%) 0 MLFS 1 (4%) 0 SD 8 (32%) 2 (17%) PD 1 (4%) 1 (8%) MRD 4/9 (44%) 8/16 (50%) negativitv¹

Efficacy: Durability

Confidential

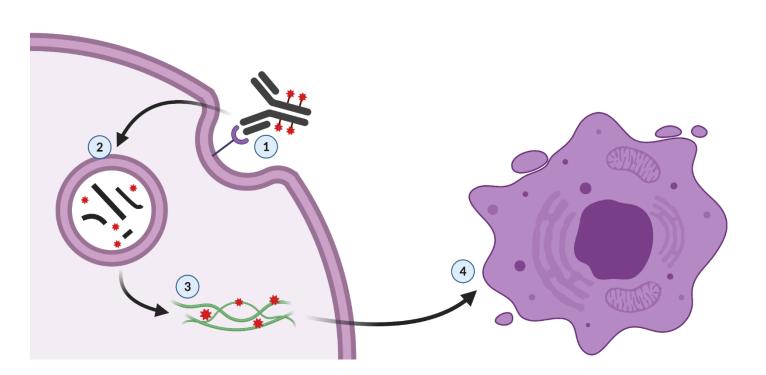
- Magrolimab is a first-in-class anti-CD47 antibody, targeting a macrophage immune checkpoint
- Magrolimab + azacitidine well-tolerated, with 64% response rate in unfit AML
- A 75% CR/CRi rate was observed in TP53 mutant AML with clearance of TP53 mutational burden in majority of patients

Slide Courtesy of Naval Daver

Daver N et al, EHA 2020, S144

¹responses in responders

Page 1 of 1


- Immune checkpoint inhibitors
- Antibody-drug conjugates
- Bispecifics
- Cellular therapies

Antibody-drug conjugates

- 1. Antibody binds to receptor on tumor cell
- 2. ADC is internalized and broken down
- 3. Drug payload performs its MOA (here, microtubule disruption)
- 4. Apoptosis is induced in target cell

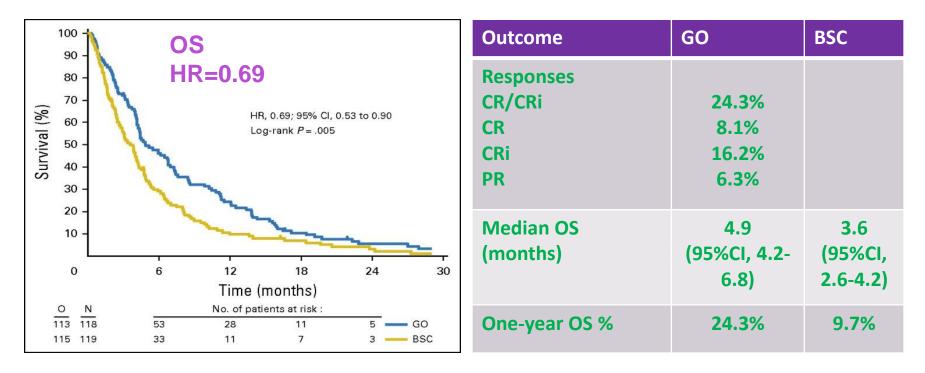
FDA-approved antibody-drug conjugates

Drug	Target antigen	Indication	
		Classical Hodgkin lymphoma, relapsed after HSCT or ≥2 previous therapies	
Brentuximab vedotin	CD30	Cutaneous anaplastic large cell lymphoma or CD30+ mycosis fungoides ≥ 1 previous therapies	
		Classical Hodgkin lymphoma - first line with combination chemo	
		Classical Hodgkin lymphoma consolidation after auto-HSCT	
Inotuzumab ozogamicin	CD22	Relapsed/refractory/MRD+ B-cell ALL	
Polatuzumab vedotin (w/ bendamustine & rituximab)	CD79b	DLBCL ≥ 2 previous therapies	
Gemtuzumab ozogamicin	CD33	R/R or newly-diagnosed CD33+ AML in adults or pediatric patients	
Belantamab mafodotin	BCMA	R/R multiple myeloma after <u>></u> 4 prior therapies	

#LearnACI

ACCCC AMERICAN ACADEMY OF EMERGENCY MEDICINE Association of Community Contrast Contrast

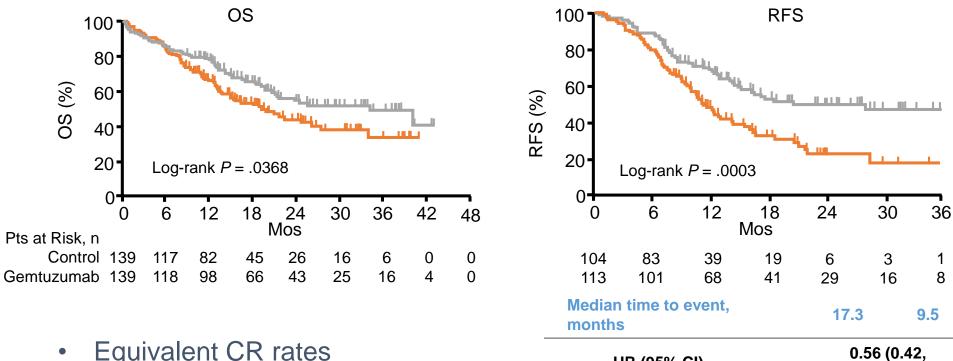
HOPA


sitc

Society for Immunotherapy of Cancer

Gemtuzumab Ozogamicin Phase III EORTC-GIMEMA AML-19 Trial

237 patients (\geq 61 yr, unfit for IC) randomized 1:1 to single induction course of GO (6 mg/m² on D1 and 3 mg/m² on D8) or best supportive care (BSC). Consolidation up to 8 monthly cycles (2 mg/m² on D1) for those who did not progress).



Gemtuzumab Ozogamicin ALFA-0701 (MF3) Trial: Survival

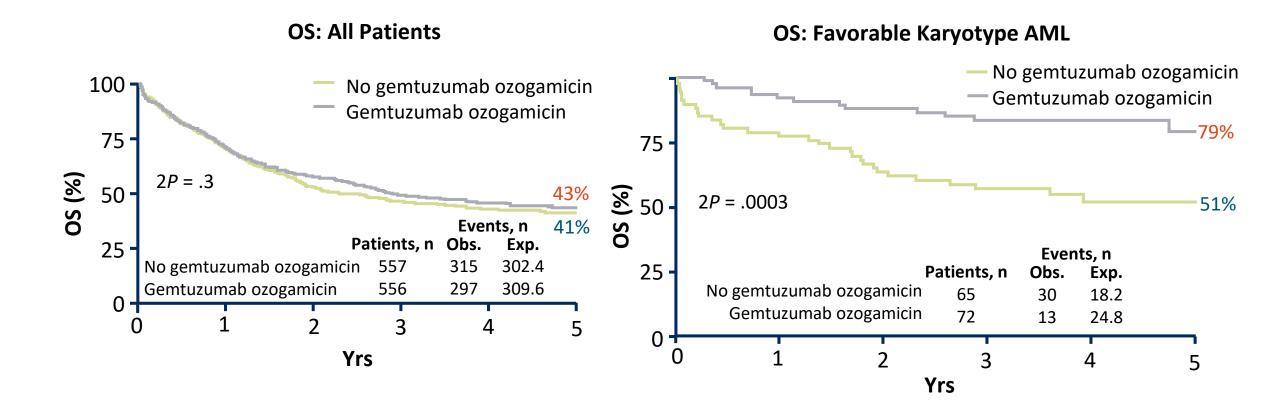
• GO 3 mg/m² on D1, 4, 7 of induction and Day 1 of each consolidation cycle

HR (95% CI)

p-value

0.76)

0.0002


ACCC

- Equivalent CR rates ٠
- Fewer relapses with GO

sitc

Addition of GO to IC AML15 Randomized phase 3 trial

Burnett AK, et al. J Clin Oncol. 2011;29:369-377

© 2020–2021 Society for Immunotherapy of Cancer

Efficacy of approved ADCs – brentuximab vedotin

Study	Treatment(s)	Patient population	Overall response rate	Complete response rate	Landmark OS
NCT00848926	Brentuximab vedotin	Relapsed/refractory Hodgkin lymphoma after failed auto-SCT	75%	33%	5-year: 41%
NCT00866047	Brentuximab vedotin	Relapsed/refractory systemic anaplastic large cell lymphoma	86%	66%	5-year: 60%
ECHELON-1	Brentuximab vedotin + doxorubicin, vinblastine, and dacarbazine	Previously untreated stage III or IV Hodgkin lymphoma	2-year modified PFS rate: 82.1% 2-year modified PFS rate: 77.2%		2.1%
	Doxorubicin, bleomycin, vinblastine, and dacarbazine				7.2%
AETHERA	Brentuximab vedotin	Unfavorable-risk relapsed or primary refractory classic Hodgkin lymphoma	Median PFS: 4	42.9 months	
	Placebo	after auto-SCT	Median PFS: 24.1 months		

© 2020–2021 Society for Immunotherapy of Cancer

#LearnACI

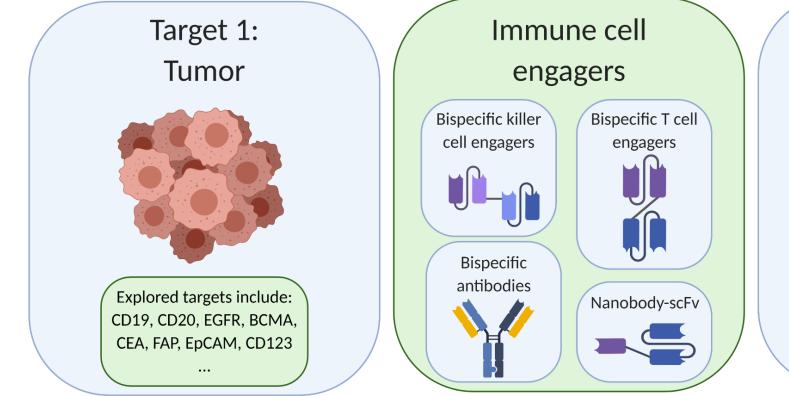
Efficacy of approved ADCs

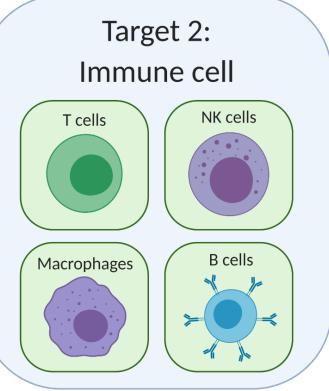
Study	Treatment(s)	Patient population	Key outcomes
INO-VATE	Inotuzumab ozogamicin Standard-of-care chemo	Relapsed/refractory B cell precursor ALL	CR/CRi rate: 73.8% vs 30.9% Median OS: 7.7 vs 6.2 months 2-year OS: 22.8% vs 10%
GO29365	Polatuzumab vedotin + bendamustine & rituximab Bendamustine & rituximab	Relapsed/refractory DLBCL	CRR: 40.0% vs 17.5% Median PFS: 9.5 vs 3.7 months Median OS: 12.4 vs 4.7 months
ALFA-0701	Gemtuzumab ozogamicin + daunorubicin + cytarabine Daunorubicin + cytarabine	De novo acute myeloid leukemia	CR/CRp rate: 81.5% vs 73.6% Median OS: 27.5 vs 21.8 months Median EFS: 17.3 vs 9.5 months
DREAMM-2	Belantamab mafodotin	R/R multiple myeloma after IMiD, PI, and anti-CD38	ORR: 31% Median PFS: 2.9 months

© 2020–2021 Society for Immunotherapy of Cancer

In development: Novel ADCs in clinical trials

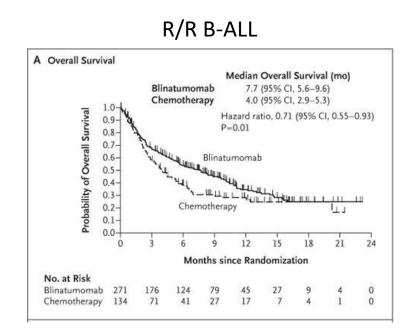
Trial	Indication	Treatment(s)	ADC target antigen	Phase
NCT03544281	R/R multiple myeloma	GSK2857916 + lenaolidomide + dexamethasone	BCMA	2
		GSK2857916 + bortezomib + dexamethasone		
NCT03386513	CD123+ AML, BPDCN or ALL	IMGN632	CD123	1/2
NCT03424603	R/R B cell malignancies	STRO-001	CD74	1
NCT03682796	R/R B cell lymphoma	TRPH-222	CD22	1
NCT04240704	CLL or NHL	JBH492	CCR7	1
NCT03833180	Pre-treated hematologic malignancies	VLS-101	ROR1	1



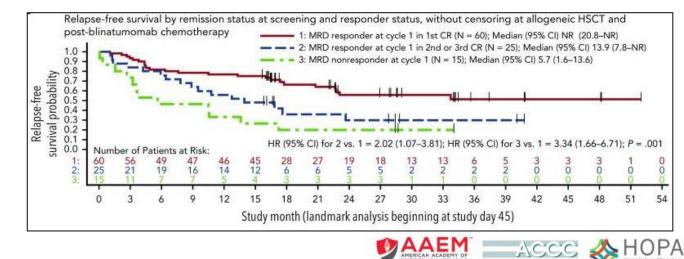

- Immune checkpoint inhibitors
- Antibody-drug conjugates
- Bispecifics
- Cellular therapies

Bispecifics in immunotherapy

Commonly CD3 on T cells, CD16 for NK and macrophages, etc


Clinical use of immune cell engagers

Drug	Indications	CD19
	Relapsed/refractory B-ALL	
Blinatumomab	B-ALL in 1 st or 2 nd complete response with MRD ≥ 0.1%	CD3

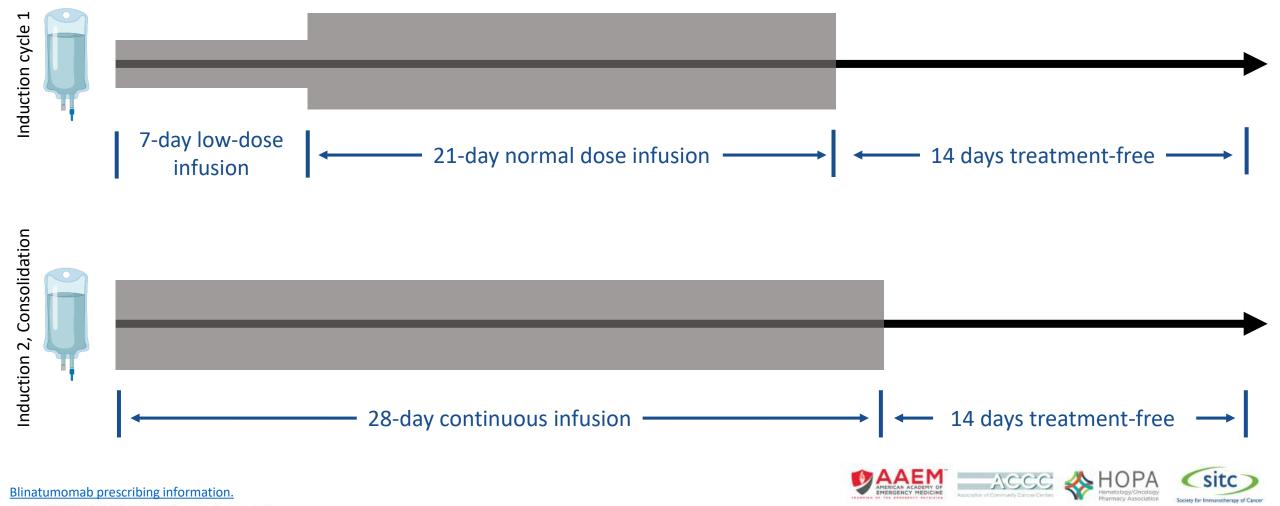


Blinatumomab in R/R B-ALL

Trial	Patient population	Treatment	Key outcomes
NCT02013167	Adults with R/R B-ALL	Blinatumomab	Median OS: 7.7 vs 4.0 months
		Chemotherapy	Median DOR: 7.3 vs 4.6 months
NCT01207388	Adults with MRD+ B-ALL	Blinatumomab	Complete MRD response rate: 78% Median OS: 36.5 months

MRD+ B-ALL

Csitc)


Dosing regimens for blinatumomab

	СусІе		Patients weighing 45 kg or more (Fixed-dose)	Patients weighing less than 45 kg (BSA-based dose)	
MRD- positive B- ALL	Induction cycle 1	Days 1-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)	
	-	Days 29-42	14-day treatment-free interval	14-day treatment-free interval	
	Consolidation cycles 2-4	Days 1-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)	
		Days 29-42	14-day treatment-free interval	14-day treatment-free interval	
R/R B- ALL	Cycle		Patients weighing 45 kg or more (Fixed-dose)	Patients weighing less than 45 kg (BSA-based dose)	
	Induction cycle 1	Days 1-7	9 mcg/day	5 mcg/m ² /day (not to exceed 9 mcg/day)	
		Days 8-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)	
		Days 29-42	14-day treatment-free interval	14-day treatment-free interval	
	Induction cycle 2	Days 1-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)	
		Days 29-42	14-day treatment-free interval	14-day treatment-free interval	
	Consolidation cycles 3-5	Days 1-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)	
		Days 29-42	14-day treatment-free interval	14-day treatment-free interval	
	Continued therapy cycles	Days 1-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)	
	6-9	Days 29-42	56-day treatment-free interval	56-day treatment-free interval	
natumomab prescr	ibing information.			AAAEM AMERICAN ACADEMY OF EMERGENCY MEDICINE Auscador of Community Carbon Certain Society for Instrumentation of Carbon	

© 2020–2021 Society for Immunotherapy of Cancer

Dosing regimens for blinatumomab – R/R B-ALL

© 2020–2021 Society for Immunotherapy of Cancer

Common side effects of T cell engagers

Cytokine release syndrome

- Characterized by initial flu-like symptoms, which progress into a shock-like syndrome with elevation in cytokine levels
- Patients display fever, vascular leakage, and organ dysfunction
- Variable onset and course
- Pre-treatment with dexamethasone required
- Management:
 - IL-6 and IL-6R antagonism
 - Corticosteroids
 - Other cytokine receptor antagonists

B cell aplasia

- Due to current clinical agents targeting CD19, which is expressed by both normal and neoplastic B cells
- May result in hypogammaglobulinemia
- Increased risk of infection
- Managed through administration of intravenous immunoglobulin

Stay tuned: more information on toxicity management later in this program

Neurotoxicity

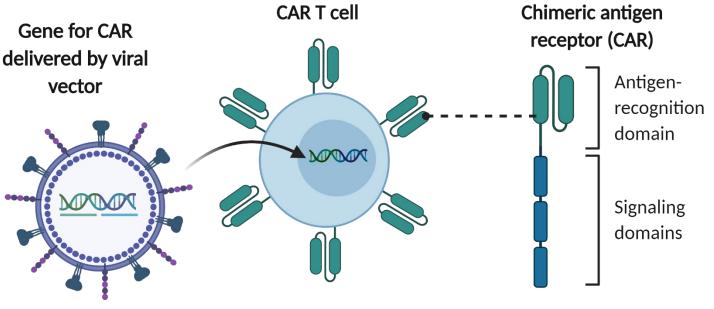
- Also known as "immune effector cell-associated neurotoxicity syndrome" (ICANS)
- Manifests as confusion, delirium, seizures, cerebral edema
- Largely unknown mechanisms
- Incidence increases with more doses, increased age, more prior therapies
- Management:
 - Supportive care for low-grade
 - Corticosteroids for highergrade

In development: Novel immune cell engagers in clinical trials

Trial	Indication	Treatment	Target antigens	Phase
NCT03214666	HR myelodysplastic syndromes, R/R AML, systemic mastocytosis	GTB-3550 (TriKE)	CD16, IL-15, CD33	1/2
NCT03516591	High-risk myelodysplastic syndromes	AMV564	CD33, CD3	1
NCT03739606	CD123+ R/R blood cancers	Flotetuzumab	CD123, CD3	2
NCT02730312	CD123+ R/R blood cancers	XmAb14045	CD123, CD3	1
NCT03888105	R/R B cell NHL	Odronextamab	CD20, CD3	2
NCT03309111	Previously treated multiple myeloma	GBR 1342	CD38, CD3	1/2
NCT03761108	R/R multiple myeloma	REGN5458	BCMA, CD3	1/2

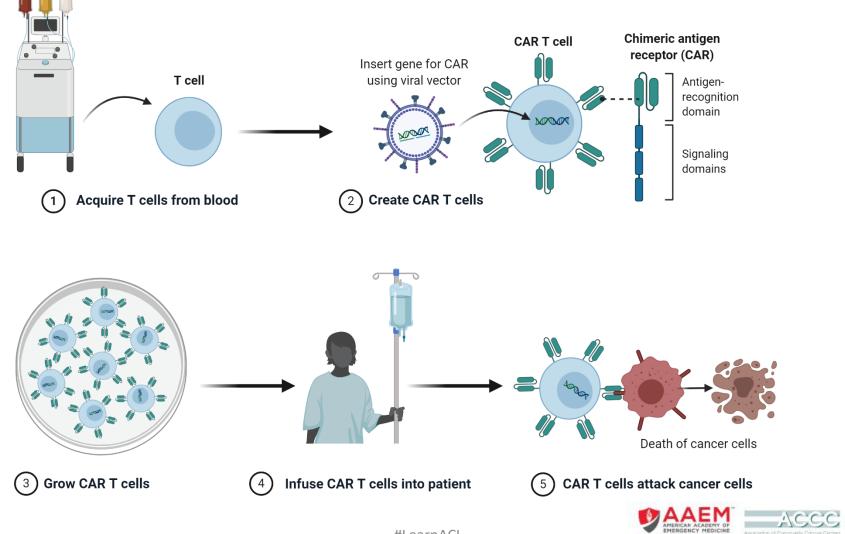
- Immune checkpoint inhibitors
- Antibody-drug conjugates
- Bispecifics
- Cellular therapies

Comparing T cell engagers and CAR T therapy


	CAR T cells	T cell engagers (BiTEs)
Structure	Synthetic gene construct encoding an scFv against tumor antigen linked to activation/costimulatory motifs	Recombinant protein with two specificities: one for tumor antigen and one for T cell antigen (usually CD3)
Effector cell types	Engineered CD8+ and CD4+ T cells	Endogenous CD8+ and CD4+ T cells
Immune synapse	Atypical	Typical
Serial killing	Yes	Yes
Killing mechanisms	Perforin and granzyme B, Fas-Fas-L, or TNF/TNF-R	Perforin and granzyme B
Trafficking	Active	Passive
Clinical applications	Pre-treatment lymphodepletion followed by a single infusion	No lymphodepletion; repeat administration and continuous infusions.
Specificity	Manufactured for each patient	"Off-the-shelf"

Chimeric antigen receptors

- Overcome immune tolerance
- Targets surface molecules in native conformation
- Independent of antigen presenting cell and MHC complex


Evolution of CAR constructs

CAR T manufacturing and administration

sitc

Society for Immunotherapy of Cancer

FDA-approved CAR T cell therapies

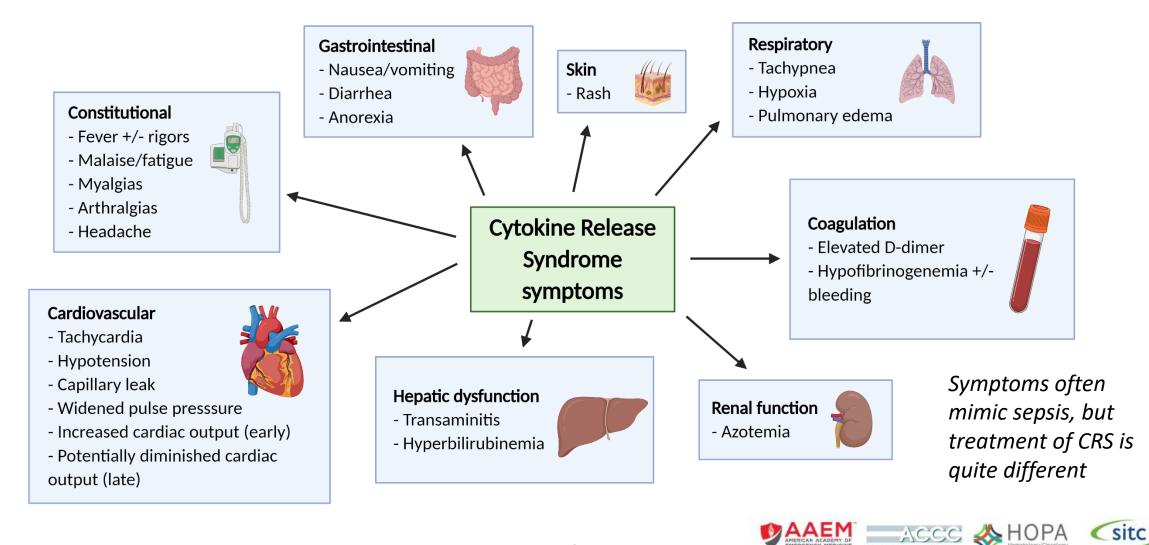
Drug	Target/co- stimulatory domain	Indication	Dose
Axicabtagene ciloleucel	CD19/CD28	Adults with r/r large B-cell lymphoma, Including diffuse large B-cell lymphoma, primary mediastinal large B-cell lymphoma, high-grade B-cell lymphoma, and DLBCL arising from follicular lymphoma	2 x 10 ⁶ CAR-positive, viable T cells per kg bodyweight (up to 2x10 ⁸)
Tisagenlecleucel	CD19/4-1BB	Patients ≤25 yr with refractory B-cell acute lymphoblastic leukemia or in 2+ relapse	0.2-0.5x10 ⁶ CAR-positive, viable T cells per kg if under 50 kg 0.1-2.5x10 ⁸ CAR-positive, viable T-cells if over 50 kg
Tisagenlecleucel	CD19/4-1BB	Adults with r/r large B-cell lymphoma after 2+ therapies Including DLBCL, high-grade B-cell lymphoma, DLBCL arising from follicular lymphoma	0.6-6.0 x 10 ⁸ CAR-positive, viable T cells
Brexucabtagene autoleucel	CD19/CD28	Adults with mantle cell lymphoma (MCL) who have not responded to or who have relapsed following other treatments	2 x 10 ⁶ CAR-positive, viable T cells per kg bodyweight (up to 2x10 ⁸)
		#LearnACI	ACCCC AND

Comparing clinical trials of CAR T therapies

Trial	Indication	Treatment(s)	ORR	Landmark OS	Grade 3+ toxicity rates
ZUMA-2	R/R mantle cell lymphoma	Brexucabtagene autoleucel (KTE- X19)	86% CRR: 57%	1-year: 86%	CRS: 18% NE: 46%
ZUMA-1	Refractory large B cell lymphoma	Axicabtagene ciloleucel	83% CRR: 58%	2-year: 50%	CRS: 11% NE: 32%
JULIET	R/R diffuse large B cell lymphoma	Tisagenlecleucel	52% CRR: 40%	1-year: 49%	CRS: 22% NE: 12%
ELIANA	R/R B cell acute lymphoblastic leukemia	Tisagenlecleucel	82% CRR: 62%	18-month: 70%	CRS: 48% NE: 13%

© 2020-2021 Society for Immunotherapy of Cancer

CAR T side effects


- Cytokine Release Syndrome (CRS)
- Neurotoxicity
 - ICANS: Immune effector cell-associated neurotoxicity syndrome
 - NE: Neurologic events
- B cell aplasia
- Macrophage Activation Syndrome (MAS)/HLH

Stay tuned: more information on toxicity management later in this program

CAR T side effects - CRS

#LearnACI

Eligibility considerations for CAR

- Disease
 - Relative stability during CAR T manufacturing (~2-6 weeks)
 - Bridging therapy (chemo, RT, steroids, lenalidomide, ibrutinib)
 - CNS control
- Patient
 - Adequate cell counts
 - DVT, bleeding, infection, neuro disorders
 - Functional status: at screen vs. day of CAR T infusion
- Other
 - Social support, reimbursement
 - Availability of tocilizumab for CRS management

In development: Novel CAR T therapies in clinical trials

Trial	Indication	Treatment	Target antigen	Phase
NCT03651128	R/R multiple myeloma	bb2121	BCMA	3
NCT03971799	R/R pediatric AML	CD33CART	CD33	1/2
NCT04186520	R/R B cell malignancies	CAR-20/19 T cells	CD19, CD20	1/2
NCT04109482	R/R BPDCN, AML, HR MDS	MB-102	CD123	1/2
NCT03287817	Diffuse large B cell lymphoma	AUTO3	CD19, CD22	1/2
NCT02690545	R/R HL and NHL	ATLCAR.CD30	CD30	1/2

Conclusions

- Many immunotherapy options for hematological malignancies
- Checkpoint inhibitors for Hodgkin lymphoma and PMBCL high response rate, excellent tolerance, durable responses if CR
- Blinatumomab and inotuzumab for ALL effective salvage, deeper remissions
- Polatuzumab vedotin for DLBCL effective salvage, potential to become frontline
- CAR T therapy ever-increasing indications; patient selection and toxicity management still concerns

Additional Resources

Acknowledgements

• Some figures created using Biorender.com

- A 60 year old with relapsed advanced Hodgkins lymphoma after several lines of therapy has started receiving nivolumab. He received first dose of nivolumab 2 weeks ago and comes to office to receive the second dose. He reports he started experiencing significant high volume diarrhea with bloody stools and abdominal pain for last 3 days. Which of the following is wrong:
- A) We need to rule out infectious causes by stool studies and cultures
- B) Once infectious causes ruled out, this is likely an immune mediated related event (colitis) related to nivolumab
- C) If nivolumab-related colitis is confirmed, would hold nivolumab and start high dose steroids
- D) If symptoms are significant or worsened despite initial therapy, the patient might need admission, imaging and surgical consult, and stronger immunosuppression
- E) Would immediately proceed with nivolumab dose as these symptoms are unrelated

