Bayesian Designs for Early Drug Development Trials

Stephen L George, Ph.D. Cancer Vaccines Clinical Trials Working Group Alexandria, VA November 10, 2005

Thomas Bayes 1702 - 1761

What is Probability?

The probability, p, of an event satisfies three axioms:

 $0 \le p(a) \le 1$ p(a or b) = p(a) + p(b) $p(a \text{ and } b) = p(a \mid b) p(b)$

Bayes' Theorem for Simple Events

$p(b \mid a) = \frac{p(a \mid b)p(b)}{p(a)}$

Two Possible Interpretations of Probability

- Relative frequency (long-term average)
- Subjective degree of belief

Interpretations of Bayes Theorem

- Consider two hypotheses, H_0 and H_1
- Observe some data y relevant to the H_i
- Then:

$$p(H_0 | y) = \frac{p(y | H_0) p(H_0)}{p(y)}$$

 $p(H_0)$ is the prior probability of H_0 $p(y | H_0)$ is the likelihood $p(H_0 | y)$ is the posterior probability of H_0 given data y

Odds Form of Bayes' Theorem

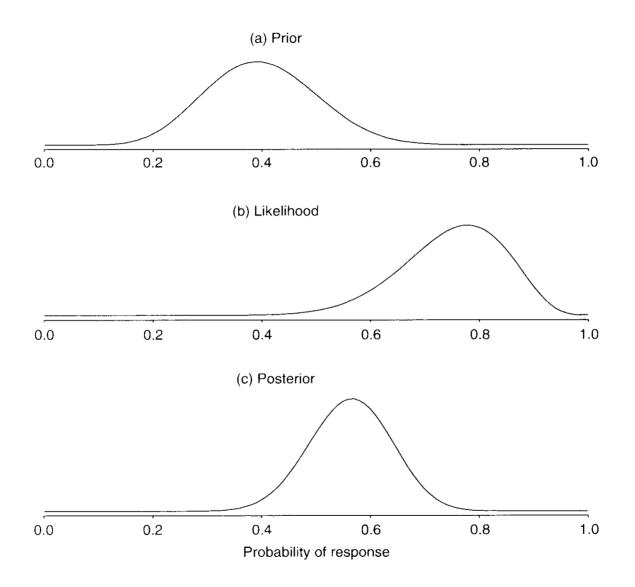
 $\frac{p(H_0 \mid y)}{p(H_1 \mid y)} = \frac{p(y \mid H_0)}{p(y \mid H_1)} \frac{p(H_0)}{p(H_1)}$ post odds = likelihood ratio x prior odds
likelihood ratio = 'Bayes factor'

Binomial Distribution

 θ = probability of success in a single binary trial y = number of successes in *n* independent trials $p(\theta \mid y) \propto \theta^{y} (1 - \theta)^{n-y} p(\theta)$ If $p(\theta) \propto \theta^{a-1} (1-\theta)^{b-1}$ then $p(\theta \mid y) \propto \theta^{a+y-1} (1-\theta)^{b+n-y-1}$ prior mean is $\frac{a}{a+b}$ posterior mean is $\frac{a+y}{a+b+n}$

Binomial Example Spiegelhalter et al (2004), pages 60 - 61

• Prior: a = 9.2, b = 13.8Mean: 9.2/23 = 0.4095% credible interval = [0.24, 0.64]• Data: 15/20 = 0.7595% confidence interval = [0.51, 0.91]• Posterior: a = 24.2, b = 18.8Mean = 24.2/43 = 0.5695% credible interval = [0.43, 0.72]



Example (continued) Hypothesis Testing

 $H_{0}: \theta \leq 0.50$ $H_{1}: \theta > 0.50$ data: y = 15, n = 20, $\hat{\theta} = 0.75$ p-value (one-tailed) = 0.20 $p(\theta \leq 0.50) = 0.74$ $p(\theta \leq 0.50 \mid y = 15, n = 20) = 0.14$ Phase II Clinical Trials Standard Statistical Approach

 $H_0: p \le p_0$ $H_1: p \ge p_1$

 $Pr \{ \text{reject } H_0 \mid H_0 \text{ true} \} = \alpha$ $Pr \{ \text{reject } H_1 \mid H_1 \text{ true} \} = \beta$

Two-Stage Design

First stage (n_1 patients): accept H_0 if $X_1 \leq a_1$ continue if $X_1 > a_1$ Second stage (additional n_2 patients): accept H_0 if $X = X_1 + X_2 \leq a$ reject H_0 if X > a n_1, n_2, a_1, a chosen to control error rates CALGB 9332: Navalbine in SCLC

two-stage design $H_0: p \le 0.05$ $H_1: p \ge 0.20$ $Pr \{ reject H_0 | H_0 \} = \alpha = 0.10$ $Pr \{ reject H_1 | H_1 \} = \beta = 0.10$ $n_1 = 14, a_1 = 0$ n = 34, a = 4

14

CALGB 9332: Navalbine Results

stage 1 response rate = 2/14 = 0.14overall response rate = 4/30 = 0.1395% CI = (0.04,0.31) P-value (one-sided) = 0.06 accept or reject H_0 ?

Bayesian Analysis of 9332

- Some possible priors (beta distribution):
 - Uniform (a = 1, b = 1)
 - Pessimistic (a = 1, b = 19)
 - Optimistic (a = 4, b = 16)
- Posterior distribution
 Beta (a + y, b + n y)

Bayesian Probabilities Prior to Study

Prior	(a,b)	$P~(\theta \le 0.05)$	$P(\theta \ge 0.20)$
Uniform	(1,1)	0.05	0.80
Pessimistic	(1,19)	0.62	0.01
Optimistic	(4,16)	0.01	0.45

Bayesian Probabilities End of Stage 1 (data: 2/14 = 0.14)

Prior	(a+y,b+n-y)	$P(\theta \le 0.05)$	$P(\theta \ge 0.20)$
Uniform	(3,13)	0.04	0.40
Pessimistic	(3,31)	0.23	0.03
Optimistic	(6,28)	< 0.01	0.33

Bayesian Probabilities End of Stage 2 (data: 4/30 = 0.13)

Prior	(a+y,b+n-y)	$P~(\theta \le 0.05)$	$P(\theta \ge 0.20)$
Uniform	(5,27)	0.02	0.23
Pessimistic	(5,45)	0.10	0.02
Optimistic	(8,42)	< 0.01	0.21

Phase I Trials Traditional 3 + 3 Design

- Define DLT
- Fix dose levels: d_0 , d_1 , d_2 , ...
- Three subjects at d_i
 - If 0 of 3 DLTs, escalate
 - If 1 of 3, add 3 subjects
 - If 1 of 6, escalate
 - If > 1 of 6, stop (MTD is d_{i-1})

- If 2 of 3, stop (MTD is d_{i-1})

Phase I Clinical Trials

Bayesian Approaches

- Specify dose-toxicity model
- Set prior on parameters
- Enter cohorts, observe results
- Update probability distribution on parameters
- Select next dose based on predictive probability of toxicity distribution
- Stop when information is strong enough

Bayesian Designs for Phase I Trials Thall and Lee 2003

- Continual reassessment method
- Logistic models

Advantages of Bayesian Designs Over 3 + 3 Design

- Higher probability of correct identification of MTD
- More patients treated at the correct MTD
- Fewer percentage of patients treated at doses exceeding the true MTD
- Less premature stopping

Advantages of a Bayesian Approach

- Intuitive and flexible procedures
- All evidence, internal and external, can be used
- Probability statements can be made about quantities of interest
- Focus is on how evidence changes beliefs
- Specification of prior requires careful discussion during design stage
- Recognition of the importance of context

Problems in Bayesian Approaches

- Unfamiliarity with Bayesian techniques
- Explicit use of subjective input
- Specification of priors
- Lack of standards in design, analysis, reporting
- Computational complexity
- Limited or unfriendly software