SITC 2019 Gaylord National Hotel & Convention Center Nov. 6-10

NATIONAL HARBOR, MARYLAND

Immune enrichment and functional T-cell receptor (TCR) frequencies predict response to immune checkpoint blockade (ICB) in selected fusion-associated sarcomas

Akash Mitra

The University of Texas MD Anderson Cancer Center

Disclosures

- I have no financial relationships to disclose.
- I will be discussing agents on investigational use in my presentation.

Synovial Sarcoma (SS)

- Predominantly affects adolescents and young adults (AYA)
- Characterized by oncogenic SS18-SSX fusion gene and loss of SMARCB1
- Current treatment modalities
 - Chemotherapy, RT and surgery standard of care
 - Pazopanib (VEGFi/PDGFRi) second line (ORR 6%)

Van Der Graaf, Winette TA, et al. "Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial." *The Lancet* 379.9829 (2012): 1879-1886.

Reversible BAF (mSWI/SNF) Complex Disruption in Human Synovial Sarcoma (SS)

Kadoch, C., & Crabtree, G. R. (2013). Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. *Cell*, *153*(1), 71-85.

Alveolar soft part sarcoma (ASPS)

- Involves an unbalanced translocation between ASPSCR1 and TFE3
- The TFE3 gene breaks off from the X chromosome and attaches onto the ASPSCR1 gene on chromosome 17
- Current treatment modalities
 - RT and surgery standard of care
 - Targeted VEGF receptor tyrosine kinases inhibitors: cediranib (ORR 11%)

Judson, lan, et al. "Cediranib in patients with alveolar soft-part sarcoma (CASPS): a double-blind, placebo-controlled, randomised, phase 2 trial." *The Lancet Oncology* (2019).

Mitton, B., & Federman, N. (2012). Alveolar soft part sarcomas: molecular pathogenesis and implications for novel targeted therapies. *Sarcoma*, 2012.

Role of ICB in sarcoma

- Phase 2 study investigating the role of pembrolizumab (anti-PD1) in the treatment of soft-tissue sarcoma (STS) and bone sarcoma
- Findings suggest that pembro is clinically active in patients with undifferentiated pleomorphic sarcoma or dedifferentiated liposarcoma
- Need to expand to other cohorts of both STS and bone sarcoma

Tawbi, Hussein A., et al. "Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial." *The Lancet Oncology* 18.11 (2017): 1493-1501.

Trial design: Anti-CTLA-4 in combination with

anti-PD-L1

Sarcoma arms:

- 1. Adipocytic tumors
- 2. Vascular tumors
- 3. UPS
- 4. Synovial sarcoma
- 5. Osteosarcoma
- 6. ASPS
- 7. Chordoma
- 8. Others

Restaging every 8 weeks with confirmatorty scan at 12 weeks

Combo phase up to 4 doses.

Q4W durvalumab 1500mg and Q4W tremelimumab 75mg

Durvalumab monotherapy phase up to 50 weeks overall

Blood draw and tumor biopsy at pre-treatment time point

Blood draw and tumor biopsy at 6 weeks on-treatment time point

Primary endpoint:

- PFS at 12 weeks greater than 40%
- Secondary endpoint:
- irRC and irRECIST response rate
- PFS at 24 weeks and OS
- Safety and tolerability

Molecular correlates related to ICB:

- Whole exome sequencing
- RNA-sequencing
- TCR-sequencing
- Multiplex IF
- Flow cytometry

NCT02815995

Response criteria - irRC

- CR, complete disappearance of all lesions (whether measurable or not, and no new lesions)
- PR, decrease in tumor burden ≥50% relative to baseline
- SD, not meeting criteria for irCR or irPR, in absence of irPD

Responders

 PD, increase in tumor burden ≥25% relative to nadir (minimum recorded tumor burden)

Non-Responders

Molecular correlates under study

- Whole exome sequencing
- RNA-sequencing
- TCR-sequencing
- Multiplexed Immunofluorescence Presented by Edwin Parra Cuentas Poster #360 on 11/9

Best response across both cohorts

Tumor mutation burden was not predictive of response

Nonsynonymous mutations p = 0.5Nonsynonymous SNV burden

Response

NonResponder

Responder

Overall transcriptomic clustering indicates a separation based on histology

Differential expression is driven through an immune enrichment in pre-treatment samples of ASPS

KEGG pathway level enrichment upregulated in responders with ASPS indicate an upregulation in immune response

Increased levels of B-cell infiltration in pre-treated ASPS and SS responders

Diversity and not clonality of TCR correlates with response

Lower maximum productive frequency of the TCR

correlates with tumor shrinkage

Conclusions and Future Directions

- Higher TMB and TCR clonality not predictive in response to ICB
- Immune enrichment in DEGs contributed to pathway enrichments in TCR signaling, BCR signaling and PD-L1 expression in cancer
- Increased levels of B-cells present in responders at the pre-treatment time point
- Lower maximum productive frequency of the TCR most correlates with a decrease in tumor volume
- Further immune deconvolution and BCR profiling
- Follow up studies will expand to further cohorts

Acknowledgements

Department of Genomic Medicine

Andrew Futreal

Curtis Gumbs

Jianhua Zhang

Latasha Little

Xingshi Song

Rebecca Thornton

Marcus Coyle

Samantha Tippen

Christigale Mandapat

Joshua Baguley

Department of Melanoma Medical Oncology Patrick Hwu

Chantale Bernatchez

Sarcoma Medical Oncology

Neeta Somaiah Anthony Conley

Vinod Ravi

Dejka Araujo

Maria Zarzour

John Andy Livingston

Shreyaskumar Patel

Robert Benjamin

Translational and Molecular Pathology

Ignacio Wistuba

Alexander Lazar

Grace Mathew

Beatriz Sanchez-Espiridion

Celia Garcia-Prieto

Cara Haymaker

Department of Radiation Oncology

Behrang Amini

Department of Biostatistics

Heather Lin

AstraZeneca/Medimmune

Jean Charles Soria
Jaime Rodrigues-Canales
Zac Cooper
Michael Oberst

CANCER PREVENTION & RESEARCH INSTITUTE OF TEXAS #RP170067

