

Potential Conflict of Interests

Clinical Trial Support

BMS, Merck, Roche, Amgen

Advisory Board

BMS, Nektar, Castle Biosciences, Eisai

NCCN Melanoma Committee Member

 This presentation will discuss products under development in clinical trials.

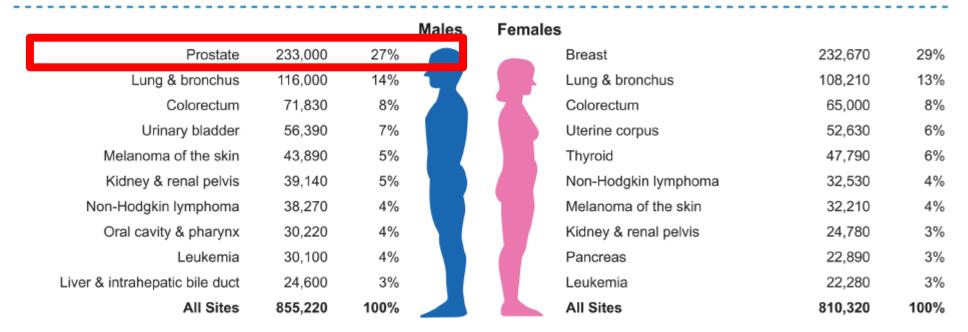
Outline

Prostate Cancer

- Sipuleucel T
- Ipilimumab

Kidney Cancer

- CTLA4 Antibody
- Anti-PD1/PD-L1
- Combinations with anti-VEGF/VEGFR

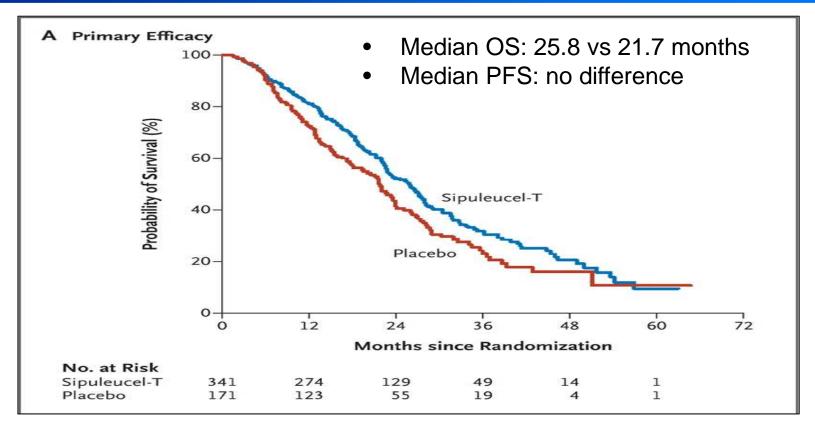

Bladder Cancer

Anti-PD1/PDL1

Prostate cancer

Estimated New Cases*

Siegel et al. CA, 2014



Sipuleucel-T

- Immunotherapy
- Dendritic cell vaccine
- Targets prostatic acid phosphatase (PAP)
- Remove peripheral blood cells, expose to PAP-GMCSF, reinfuse
- Phase 3 study vs placebo

Overall Survival

Kantoff PW et al. N Engl J Med 2010;363:411-422.

Sipuleucel T-Remaining Questions

- When is the best time to use it?
- How to measure success?
- Role of adding of checkpoint inhibitors?

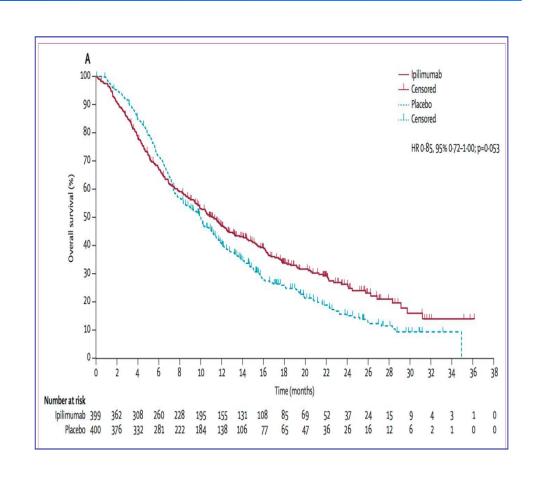
Ipilimumab in Prostate Cancer

- Randomized Phase 3 vs placebo
- 799 patients
- Progressed on taxotere
- 4 doses at 10 mg/kg

Lancet

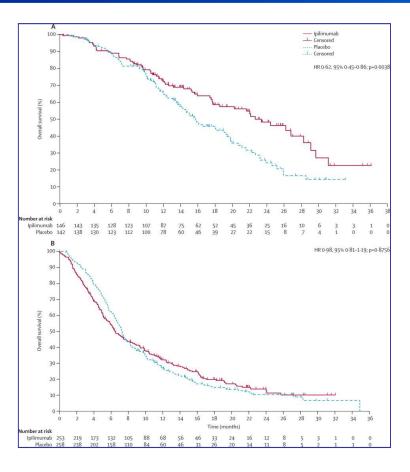
Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial

Kwon et al, 2014


Overall Survival

Median OS

11.2 vs 10.0 months


p=0.053

Kwon et al, 2014

Subset Analysis

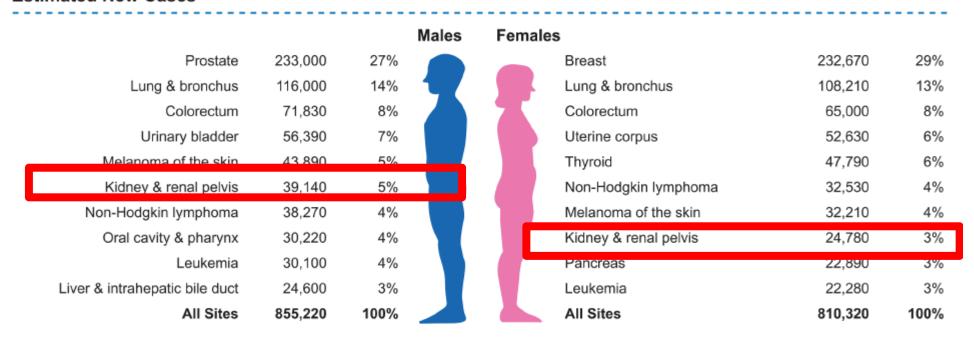
Good Prognostic Group

OS: 22.7 vs 15.8 months,
 p=0.003

Poor Prognostic Group

OS: 6.5 vs 7.3 months, p=0.003

Kwon et al, 2014


Conclusions-Prostate

- Proof of principle is there for immunotherapy in prostate
- More work necessary to better understand patient selection, timing, agents, and combinations

Kidney cancer

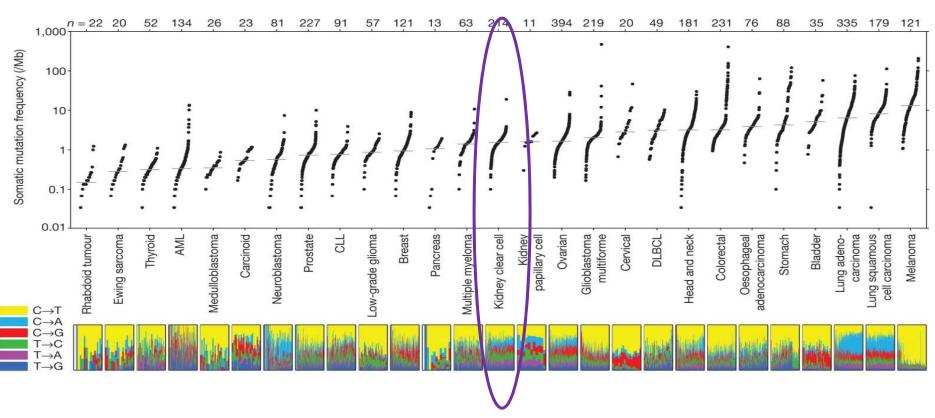
Estimated New Cases*

Siegel et al. CA, 2014

RCC Landscape

Setting		Phase III	Alternative	
		Sunitinib		
1 of Line	Good or intermediate risk*	Pazopanib	HD IL-2	
1st-Line Therapy		Bevacizumab + IFN α		
	Poor risk*	Temsirolimus	Sunitinib	
2nd-Line Therapy	Prior cytokine	Sorafenib	Sunitinib or bevacizumab	
	Prior VEGFR inhibitor	Everolimus	Clinical Trials	
		Axitinib	Clinical Thais	
	Prior mTOR inhibitor	Clinical Trials		

Role for Immunotherapy?



Renal Cell Carcinoma

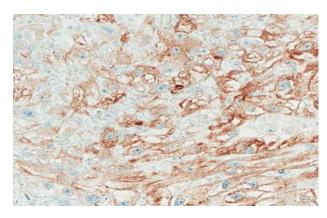
- High dose IL-2/IFN with proof of principle of success of immunotherapy
- Both limited by increased toxicity

Somatic mutations by tumor type

MS Lawrence et al. Nature 2013

CTLA-4 Blockade in mRCC

- Ipilimumab Phase II trial
 - 61 patients
 - Major response rate~10%
- Similar ORR as in melanoma


Journal of Immunotherapy

Ipilimumab (Anti-CTLA4
Antibody) Causes
Regression of Metastatic
Renal Cell Cancer
Associated With Enteritis
and Hypophysitis

Yang et al, 2007

PD-L1 Expression is Lower in RCC

Positive PD-L1 staining in RCC (PD-L1 IHC)

High sensitivity and specificity in FFPE samples

Tumor Type	Estimated PD-L1 Prevalence, ≈ %*
NSCLC (SCC)	50%
NSCLC (adeno)	45%
Colon	45%
Melanoma	40%
RCC	20%

- PD-L1 not expressed in normal human kidney cells but is aberrantly expressed in primary and metastatic RCC
- Tumor expression of PD-L1 is associated with poor prognosis

^{*} Based on staining of archival tumor tissue from patients with metastatic cancer. Thompson RH et al. *Cancer Res.* 2006;66(7):3381-3385.

Nivolumab Phase 3 Trial

N ≈ 822

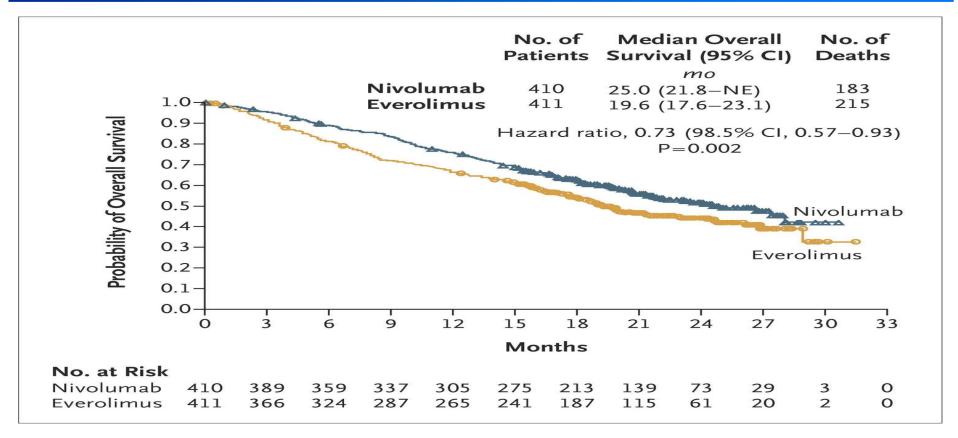
•mRCC

■≤ 2 prior anti-angiogenic therapies

■≤ 3 total prior systemic regimens

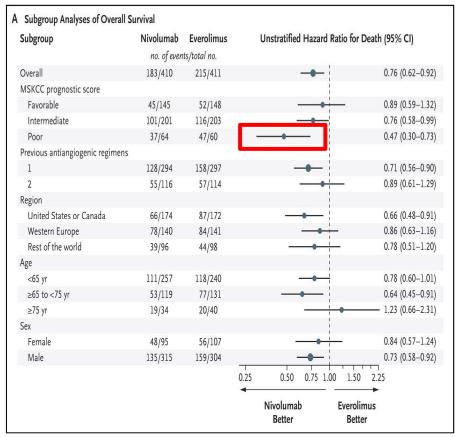
Nivolumab
3 mg/kg IV every 2 wks

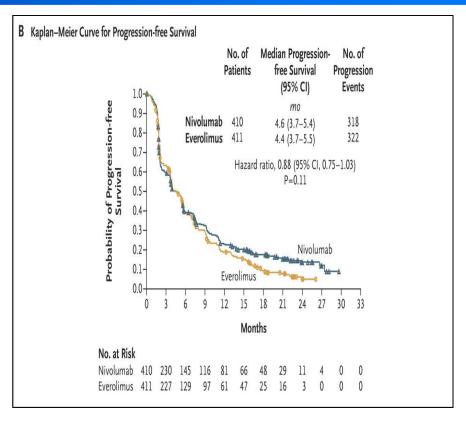
Everolimus 10 mg PO daily


Primary endpoint: OS

Secondary endpoints: PFS, ORR, OR duration, Safety

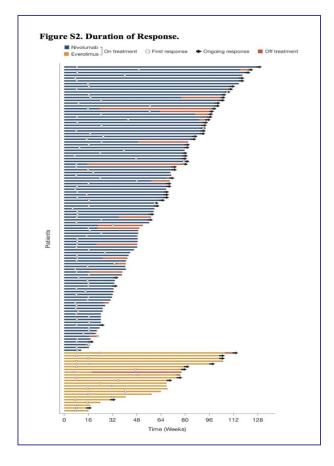
Accrual completed early 2014; July 2015- primary endpoint reached


Overall Survival



Motzer RJ et al. N Engl J Med 2015. DOI: 10.1056/NEJMoa1510665

Subgroup Analyses and PFS



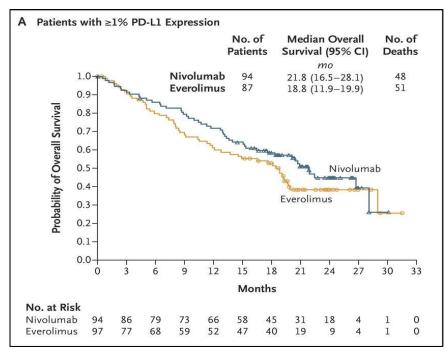
Motzer RJ et al. N Engl J Med 2015. DOI: 10.1056/NEJMoa1510665

PFS: 4.6 vs 4.4 months

Duration of Response

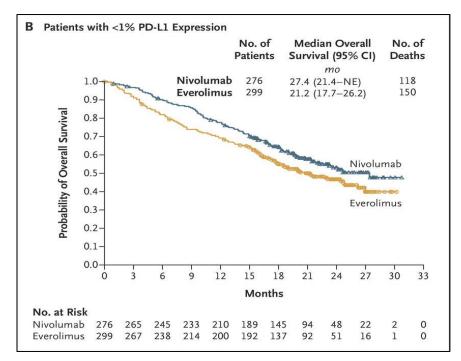
Nivolumab

- 25% ORR
- 12 months median duration


Everolimus

- 5% ORR
- 12 months median duration

Motzer RJ et al. N Engl J Med 2015. DOI: 10.1056/NEJMoa1510665


Overall Survival By PD-L1 Expression

24% with PDL1+ tumors

OS: 21.8 vs 18.8 months

Motzer RJ et al. N Engl J Med 2015. DOI: 10.1056/NEJMoa1510665

76% with PDL1- tumors

OS: 27.4 vs 21.2 months

Atezolizumab (Anti-PDL1) Phase 1a Efficacy: Investigator Assessed

	RECIST 1.1 Response Rate (ORR)	SD of 24 Weeks or Longer	24-Week PFS
Overall population (N = 140)	21%	16%	45%
RCC* (n = 47)	13%	32%	53%
Clear cell (n = 40)	13%	35%	57%
Non-clear cell (n = 6)	17%	0	20%

^{*1} patient with unknown histology. Includes sarcomatoid and papillary RCC. All patients first dosed prior to August 1, 2012; data cutoff February 1, 2013. ORR includes unconfirmed PR/CR and confirmed PR/CR.

Cho et al, ASCO 2013

Atezolizumab: PD-L1 and Tumor Grade on Efficacy in RCC

PD-L1 IHC (IC) ^a n = 62	ORR (95% CI), %
IHC 3 (n = 8)	38% (11-71)
IHC 2 (n = 12)	8% (0.4-35)
IHC 1 (n = 15)	20% (6-45)
IHC 0 (n = 21)	10% (2-30)

McDermott et al. ESMO, 2014.

IC, tumor-infiltrating immune cell.

^a A PD-L1+ cohort of patients was enrolled. 6 patients had unknown PD-L1 IHC (IC) status.

Investigator-assessed confirmed ORRs per RECIST v1.1.

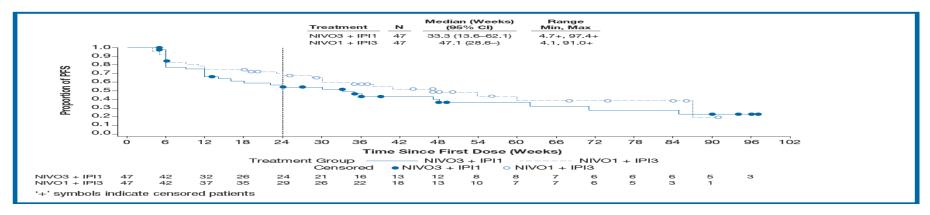
Patients dosed by Oct 21, 2013; data cutoff Apr 21, 2014.

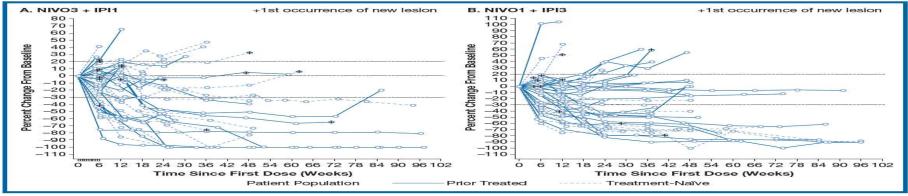
IHC 3: ≥ 10% of ICs are PD-L1+; IHC 2: ≥ 5% but < 10% of ICs are PD-L1+; IHC 1: ≥ 1 % but < 5% of ICs are PD-L1+; IHC 0: < 1% are PD-L1+.

PD-L1 expression is a weak predictive biomarker

Agent(s)	Tumor Type	n	RR (%) PD-L1 pos	RR(%) PD-L1 neg
Nivolumab ¹	Multiple Solid Tumors	42	36%	0%
MPDL3280A ²	Kidney Cancer	47	20%	10%
Nivolumab ⁴	Kidney Cancer	107	31%	18%
Nivo/Ipi ⁴	Melanoma	27	40%	47%

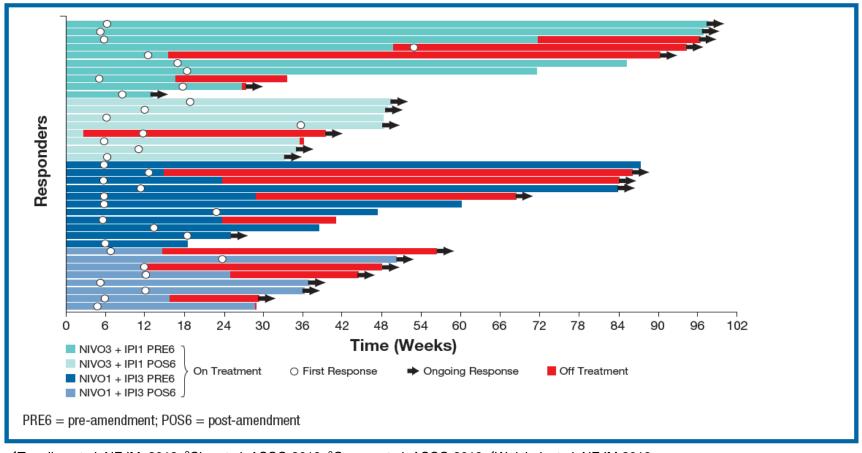
¹Topalian et al, NEJM, 2012, ²Cho et al ASCO 2013, ³Grosso et al ASCO 2013, ⁴Wolchok et al, NEJM 2013


Nivolumab/Ipilimumab in mRCC


	NIVO3 + IPI1	NIVO1 + IPI3	NIVO3 + IPI3
	N = 47	N =47	N = 6
Confirmed ORR, n (%)	18 (38.3)	19 (40.4)	0
Best OR, n (%) Complete response Partial response Stable disease Progressive disease	4 (8.5)	1 (2.1)	0
	14 (29.8)	18 (38.3)	0
	17 (36.2)	17 (36.2)	5 (83.3)
	10 (21.3)	7 (14.9)	1 (16.7)

Hammers et al ASCO 2014/2015

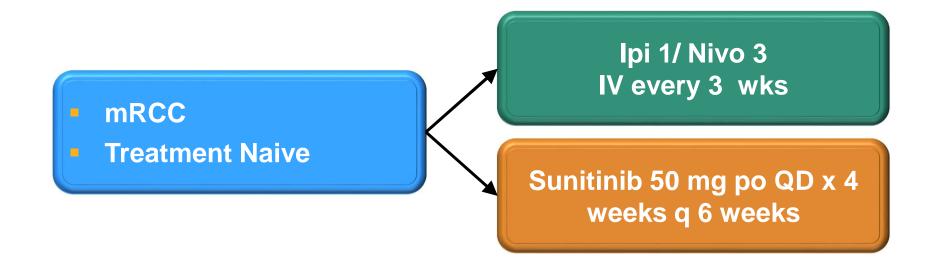
Ipilimumab and Nivolumab



McDermott et al. ESMO, 2014.

Ipilimumab and Nivolumab

¹Topalian et al, NEJM, 2012, ²Cho et al, ASCO 2013, ³Grosso et al, ASCO 2013, ⁴Wolchok et al, NEJM 2013


MAYO

Ipilimumab/Nivolumab AE's By Dose

	NIVO3 + IPI1 N = 47		NIVO1 + IPI3 N = 47	
AE, n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4
Total patients	39 (83.0)	16 (34.0)	44 (93.6)	30 (63.8)
Fatigue	23 (48.9)	0	30 (63.8)	3 (6.4)
Rash	12 (25.5)	0	10 (21.3)	0
Pruritus	12 (25.5)	0	13 (27.7)	0
Nausea	11 (23.4)	0	20 (42.6)	0
Diarrhea	11 (23.4)	1 (2.1)	20 (42.6)	7 (14.9)
Colitis	1 (2.1)	0 (0)	6 (12.8)	6 (12.8)
Chills	10 (21.3)	0	4 (8.5)	0
Hypothyroidism	9 (19.1)	0	13 (27.7)	0
Pyrexia	9 (19.1)	2 (4.3)	7 (14.9)	0
Arthralgia	9 (19.1)	0	10 (21.3)	0

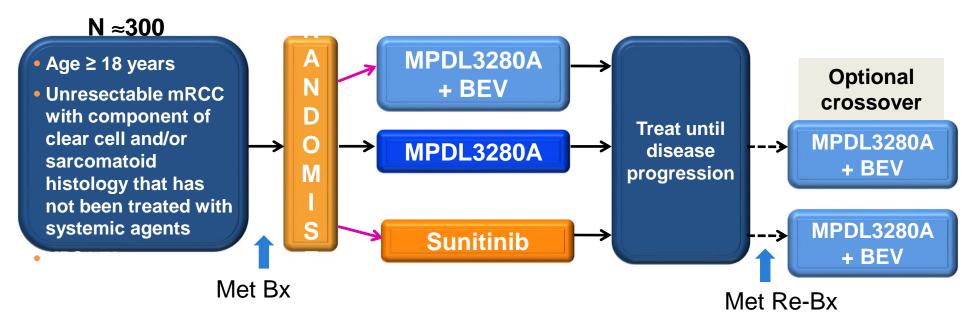
Front Line Phase 3 Trial

Began accrual late 2014; US sites completed accrual fall 2015

What about anti-VEGF and immune combos?

Two choices of anti-VEGF classes

- 1. Anti-VEGF agents (bevacizumab)
- 2. Anti-VEGFR tyrosine kinase inhibitors

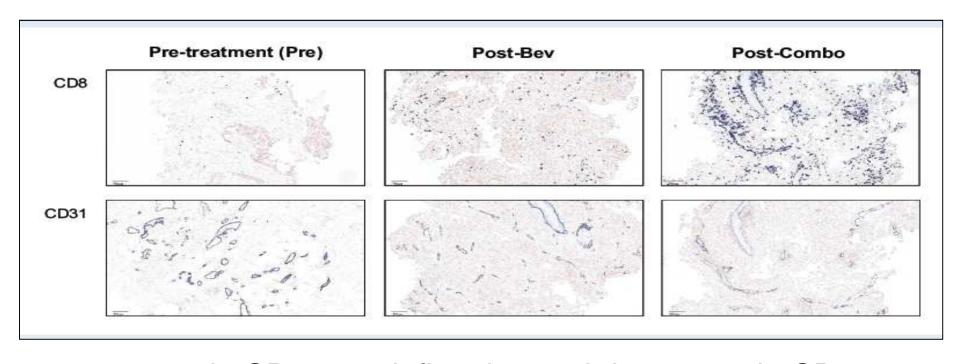

Phase I: Nivolumab + VEGFR TKI

	Sunitinib 50 mg (4/2) + nivolumab 2mg/kg Q3W (N2) or 5mg/kg Q3W (N5)	Pazopanib 800 mg QD + nivolumab 2mg/kg Q3W (N2)	
Prior therapy	42%	100%	
Nb.	n=33	n=20	
MSKCC risk	Favorable/Intermediate (94%)		
ORR (%)	52%	45%	
Median DOR range (wks)	54 18.1-80+	30 12.1-90.1+	
Median PFS (wks) ~estimated (mo)	48.9	31.4	
-commated (mo)	~11.4	~7.3	
	81.8%	70%	
Gr. 3/4 Toxicity (%)	ALT elevation 18% Hypertension 18% Hyponatremia 15%	4 DLTs (stopped) (LFTs n=3, 20%)	

ASCO 2014 #5010 AMIN (Nivo+VEGF TKI)

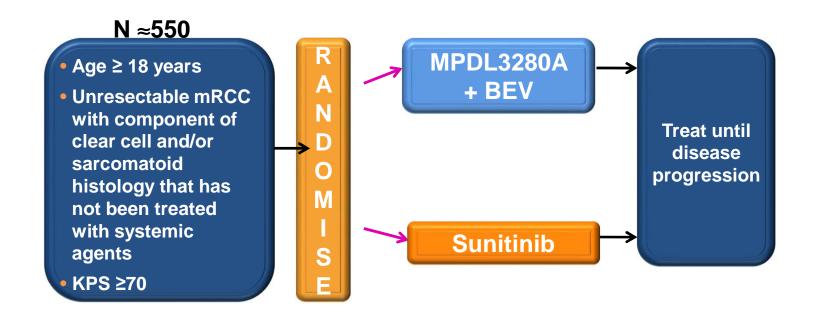
MAYO

Atezo + BEV: Randomized Phase II Study


Primary endpoint: PFS (central)

Secondary endpoints: OS, ORR, DoR, OS, safety (original treatment group)

PFS, OS, ORR, DoR (crossover groups)

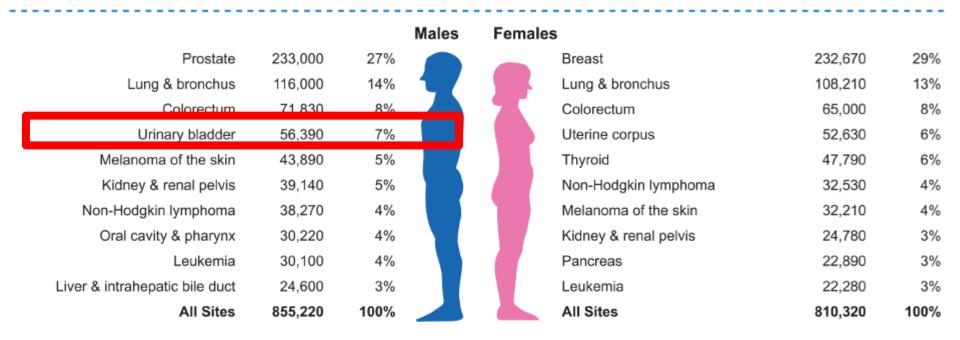

Impact on CD8 and CD31

Increases in CD8+ cell infiltration and decreases in CD31 expression were seen after Bev + Atezolizumab treatment Sznol et al GU ASCO 2015

Randomized Phase III Study

Primary endpoint: PFS (central)

Secondary endpoints: OS, RR

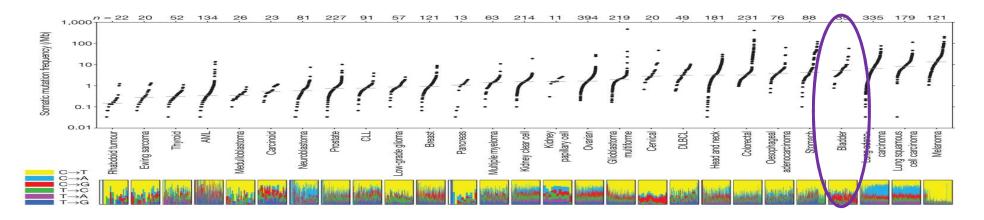

Anti-PD1/PDL1 in RCC Summary-Future Directions

- Anti-PD1/PDL1 agents with clinical activity in 25-50%
- Combination of Ipilimumab/Nivolumab and Atezolizumab/Bevacizumab are promising
- What line of use is optimal?
- Can we identify biomarkers to better identify patients likely to benefit?

Urothelial cancer

Estimated New Cases*

Siegel et al. CA, 2014



Metastatic Urothelial Cancer

- Advanced UC is a uniformly fatal disease after failure of platinum chemotherapy
- Median survival is short
- Durable responses are not routinely observed in this patient population
- Grade 3-4 toxicities are high with 2L chemotherapy
- Difficult to treat patient population with multiple comorbidities

Somatic mutations Bladder

- High mutational complexity rates similar to tobacco/environmental carcinogen exposure
- Potential for many neo-antigens to be seen as foreign by host immune system

IMvigor 210: Phase II Study

- Locally advanced or metastatic cancer of the bladder, renal pelvis, ureter or urethra
- Progression during or following platinum
 - No restriction on number of prior lines of therapy
- Creatinine clearance ≥ 30 mL/min
- ECOG PS 0-1
- Tumor tissue evaluable for PD-L1 testing^a

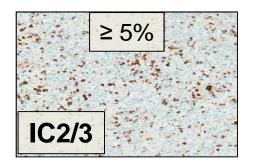
Atezolizumab
1200 mg IV
q3 weeks
until loss of
clinical benefit

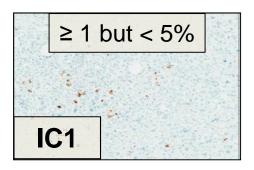
Response assessment q9 weeks (q12 weeks after 54 weeks)

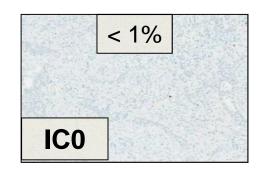
Co-primary Endpoints

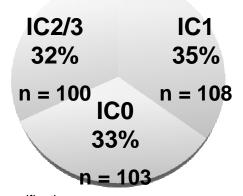
- ORR (confirmed) per RECIST v.1.1 (central independent review)
- Investigator-assessed ORR per modified RECIST
- Primary endpoints met if null hypothesis (ORR of 10%) rejected at significance level (α) of 5%

Key Secondary Endpoints


PFS, DOR, OS, Safety


^aPD-L1 prospectively assessed by central laboratory. Patients and investigators blinded to PD-L1 IHC status. Trial Identifier: NCT02108652.


Rosenberg et al, ESMO 2015

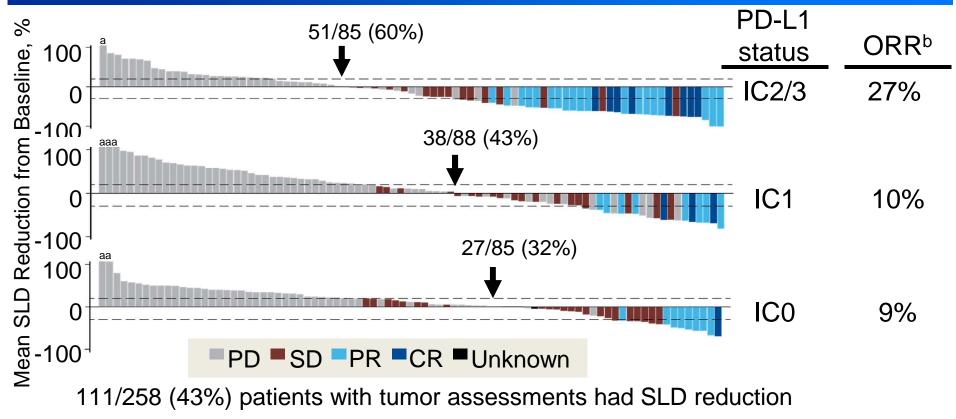

PD-L1 IHC

IHC Status of Treated Patients in IMvigor 210 Study (N = 311)

Images at 10x magnification.

- IMvigor 210 enrolled an all-comer population
- VENTANA PD-L1 (SP142) CDx
 Assay was used to prospectively
 measure tumor-infiltrating immune
 cell (IC) PD-L1 expression based on
 3 IHC scoring levels

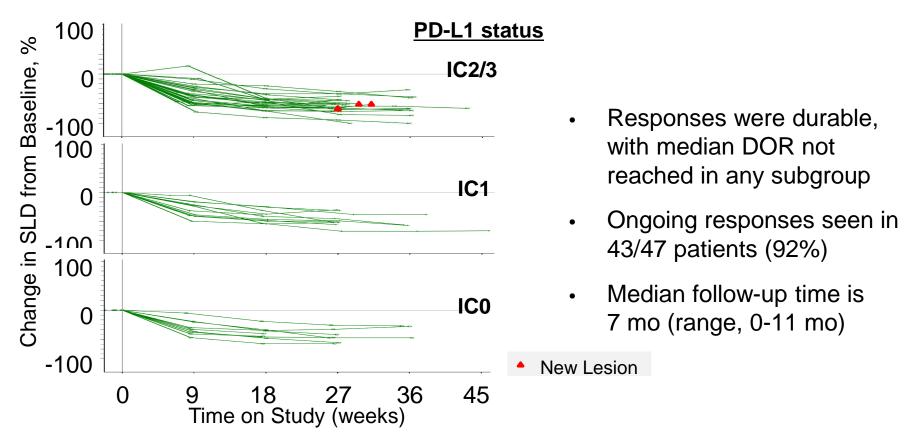
RECIST v1.1 Criteria by Independent Review


PD-L1 subgroup	n	CR (%)	ORR (%)	95% CI	P value ^b
IC2/3	100	8%	27%	19, 37	< .0001
IC1/2/3	208	5%	18%	13, 24	.0004
All	311	4%	15%	11, 20	.0058
IC1	108	3%	10%	5, 18	N/A ^c
IC0	103	1%	9%	4, 16	N/A ^c

- IMvigor 210 met its co-primary endpoints in all subgroups tested
- ORR by independent review (RECIST v1.1) and investigator (mRECIST)
 were concordant
- Early response data are likely to mature in subsequent analyses

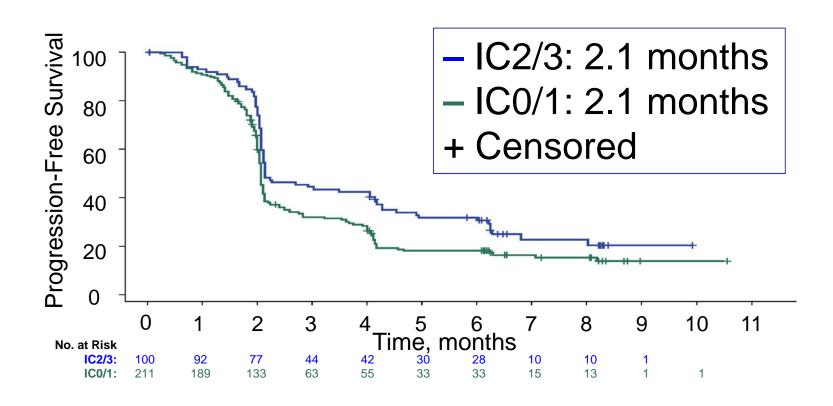
aObjective response evaluable population: all treated patients had measurable disease at baseline per investigator-assessed RECIST v1.1. ^{b}P -value for H_o: ORR = 10% versus H_a: ORR ≠ 10%, where 10% ORR is historical control, α = 0.05. c No formal hypothesis testing conducted. Data cutoff May 5, 2015. Follow up ≥ 24 weeks.

Changes in Target Lesions by PD-L1 Subgroup

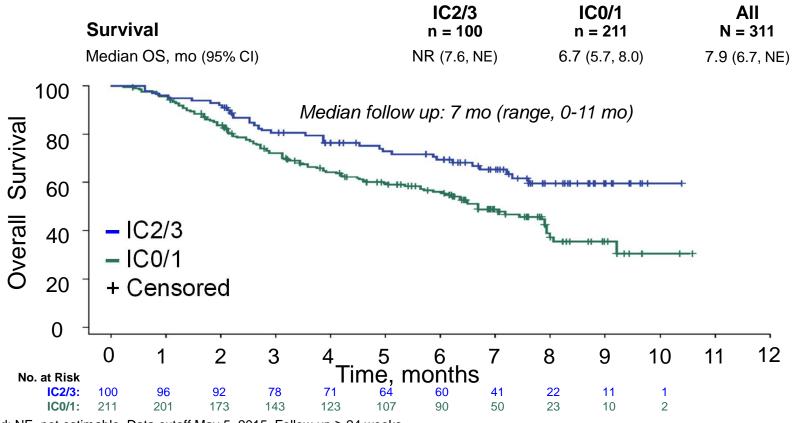

SLD, sum of longest diameters. a> 100% increase. bPer confirmed RECIST v1.1 (independent review).

Data cutoff May 5, 2015. Follow up ≥ 24 weeks. Patients without post-baseline tumor assessments not included.

Several patients with CR had < 100% reduction due to lymph node target lesions. All lymph nodes returned to normal size per RECIST v1.1.


Duration of Response

SLD, sum of longest diameters. Per RECIST v1.1 (independent review). Data cutoff May 5, 2015. Follow up ≥ 24 weeks.


Median progression-free Survival

 a Per RECIST v1.1 (independent review). Data cutoff May 5, 2015. Follow up ≥ 24 weeks.

Overall Survival

NR, not reached; NE, not estimable. Data cutoff May 5, 2015. Follow up ≥ 24 weeks.

Subgroup Analysis

ORR, % (95% CI)^a

Subgroup	IC2/3	All		
Prior systemic regimens, metastatic setting ^b				
1	26% (12, 43)	12% (7, 19)		
2	39% (17, 64)	18% (9, 30)		
≥ 3	20% (6, 44)	13% (6, 24)		
Metastatic sites at baseline				
Visceral	17% (9, 28)	10% (6, 14)		
Liver	15% (4, 34)	6% (2, 13)		
Lymph node only	38% (19, 59)	33% (20, 49)		
ECOG PS 1	19% (10, 31)	10% (6, 15)		
Hemoglobin < 10 g/dL	21% (7, 42)	9% (3,18)		

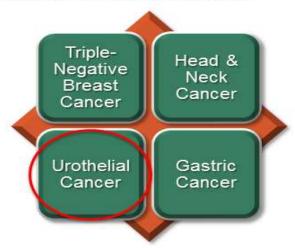
Median DOR not yet reached in any of the subgroup populations

^aPer RECIST v1.1 (independent review).

bln patients with 0 prior regimens, ORR (95% CI) was 26% (11, 46) in IC2/3 patients (n = 27) and 20% (11, 31) in all-comer patients (n = 70). Data cutoff May 5, 2015. Follow up ≥ 24 weeks.

Conclusions: Atezolizumab

- ORR of ~20%
- Responses were durable with median not reached
- Higher PD-L1 IC status was associated with higher ORR
- Well tolerated with a low rate of treatmentrelated Grade 3-4 toxicities and no treatmentrelated renal toxicity



Pembrolizumab in UBC

E. Plimack, June 1, 2015

KEYNOTE-012 (NCT01848834)

Phase Ib Multi-Cohort Study of Pembrolizumab in Patients With PD-L1 Positive Advanced Solid Tumors

Chow LQM et al. Ann Oncol. 2014;25(suppl 4):abstr LBA31; Nanda R et al. Presented at: SABCS 2014; December 9-13, 2014; San Antonio, TX. Abstr 1349; Muro K et al. J Clin Oncol. 2015;33(suppl 3):abstr 3; Plimack E et al. J Clin Oncol 2015;33 (suppl 7) abstr 2967.

Baseline Characteristics

Characteristic	Total (N = 33) N (%)
Age, yr, median (range)	70 (44-85)
Male	23 (69.7)
ECOG performance status	
0	9 (27.3)
1	24 (72.7)
Histology	
Transitional cell	30 (91)
Non-transitional cell/mixed	3 (9)
Location of metastasis	
Any liver	8 (24)
Lymph node only	3 (9)

Characteristic	Total (N = 33) N (%)
No. of prior therapies for ac	lvanced disease
0	8 (24.2)
1	8 (24.2)
2	6 (18.2)
≥3	11 (33.3)
Prior adjuvant/neoadjuvant	therapy
Yes	20 (60.6)

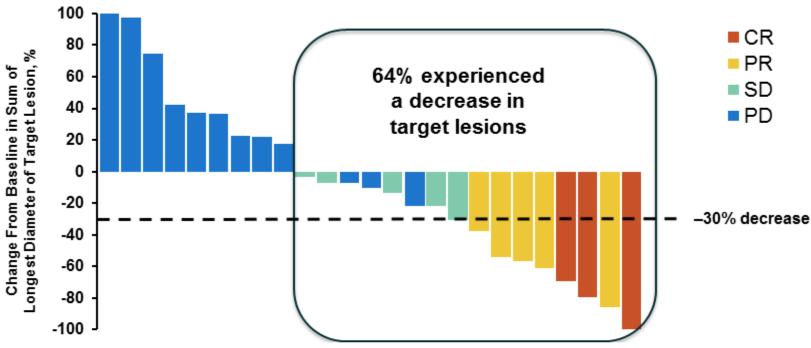
Analysis cutoff date: Mar 23, 2015.

PRESENTED AT

ORR: Pembrolizumab

	Patients Evaluable For Response* (N = 29)		
	n	%	95% CI
Overall response rate†	8	27.6	12.7-47.2
Best overall response			
Complete response	3	10.3	2.2-27.4
Partial response	5	17.2	5.8-35.8
Stable disease	3	10.3	2.2-27.4
Progressive disease	14	48.3	29.4-67.5
Disease Control Rate	11	37.9	20.6-57.7
No assessment	4	13.8	3.9-31.7

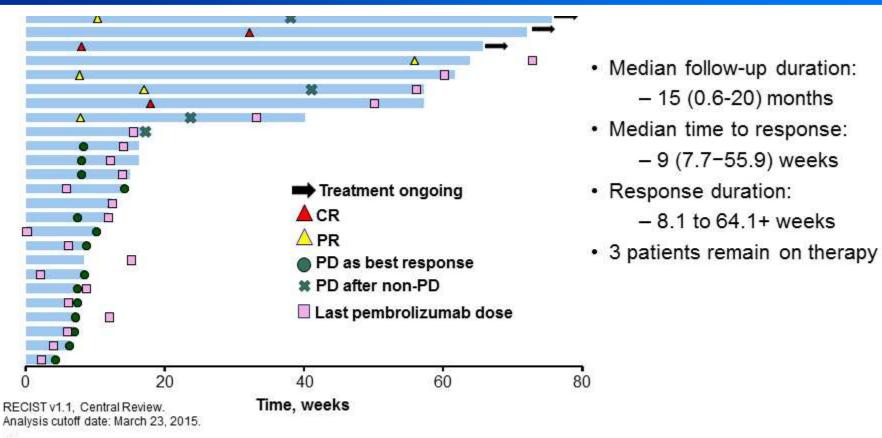
RECIST v1.1, Central Review.


Analysis cutoffdate: March 23, 2015.

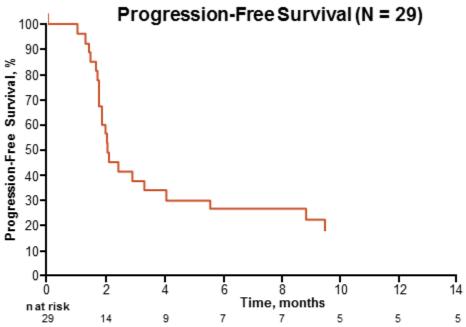
^{*}Patients evaluable for response were those with measurable disease by central review at baseline who received ≥1 pembrolizumab dose and who had ≥1 post-baseline scan or discontinued therapy before the first scan due to progressive disease or a treatment-related AE. "No assessment" signifies patients who discontinued therapy before the first scan. †Only confirmed responses are included.

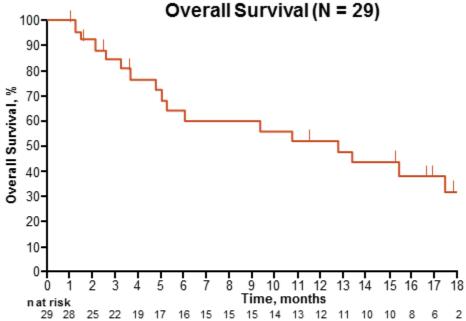
Maximum Change in Target Lesions

Analysis includes patients with measurable disease per central review at baseline who received ≥1 pembro dose and had ≥1 post-baseline tumor assessment (n = 25).

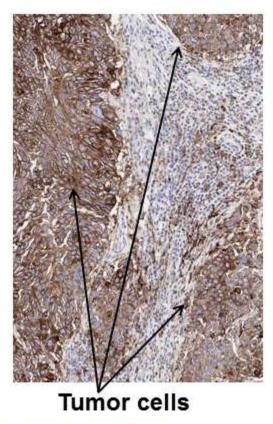

RECIST v1.1, Central Review.

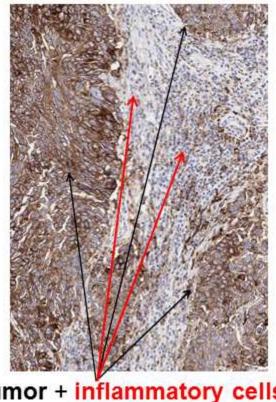
Analysis cutoff date: March 23, 2015.




Response Duration

PFS and OS


- Median PFS: 2 months (95% CI, 1.7-4.0)
- PFS rate at 12 months: 19.1%


Analysis cutoff date: March 23, 2015.

- Median OS:12.7 months (95% CI, 5.0-NR)
- OS rate at 12 months: 52.9%

PDL1 Staining

Tumor + inflammatory cells

PRESENTED AT: ASCO Annual 15 Meeting

SINE MAYOR

Exploration of PDL1 Predictive Capacity

	Tumor Cells Only (N = 29 evaluable)		mor Associated Inflammatory Cells (N = 28 evaluable)
V	ORR (95%CI)	VA.	ORR (95%CI)
Negative (N = 11)	9% (0%-41%)	Negative (N = 4)	0% (0%-60%)
Positive (N = 18)	33% (13%-59%)	Positive (N = 24)	29% (13%-51%)

 In order to maximize detecting responders while minimizing the false negative rate, scoring needs to take into account both PD-L1 positive tumor cells and PD-L1 positive tumor associated inflammatory cells

MANC

Conclusions: Pembrolizumab

- Response rate of 33% with complete response in 10%
- Response duration ranged from 8.1 to 64+ weeks
- 50% alive at 12 months
- Well tolerated with 85% with grade 1-2 or less

Anti-PD1/PDL1 Conclusions in Urotheilal

- ORR of ~25% with complete response in ~10%
- Responses appear durable
- Well tolerated
- PDL1 positive expression appears to enrich for benefit but PDL1 negative patients also benefit
- What is the efficacy in the front line or earlier stages?

GU Immunotherapy Conclusions

Prostate Cancer

 Sipuluecel T and Ipilimumab with some evidence of proof of principle for immunotherapy in prostate cancer

RCC

- Nivolumab improved OS in second line
- Awaiting results of front line combinations with ipilimumab/nivolumab and atezolizumab/bevacizumab

Urothelial Carcinoma

 Atezolizumab with promising results in large phase 2 and with breakthrough designation by FDA

GU Immunotherapy: Future Directions

Prostate Cancer

- Combinations to be tested
- Earlier in metastatic process might be beneficial

RCC

- Improvement in patient selection
- Efficacy of combinations

Urothelial Carcinoma

- Improve patient selection
- Duration of therapy, combinations

Thank you!

Questions

joseph.richard@mayo.edu