What's next for cancer immunotherapy?

Adil Daud MBBS

Professor of Medicine and Dermatology

Society for Immunotherapy of Cancer

Sitc

Disclosures

- No relevant financial relationships to disclose
- I will be discussing non-FDA approved indications during my presentation.

Activity of Pembrolizumab in Cancer

1. Daud A et al. ASCO 2015; 2. Garon EB et al. ESMO 2014; 3. Seiwert T et al. ASCO 2015; 4. Plimack E et al. ASCO 2015; 5. Nanda R et al. SABCS 2014; 6. Bang YJ et al. ASCO 2015; 7. Moskowitz C et al. ASH 2014; 8. Zinzani PL et al. ASH 2015; 9. Alley EA et al. AACR 2015; 10. Varga A et al. ASCO 2015; 11. Ott PA et al. 2015 ASCO; 12. Doi T et al. ASCO 2015; 13. Hsu C et al. ECC 2015; 14. Ott PA et al. ECC 2015; 15. Bang Y-J et al. ECC 2015; 16. O'Neil B et al. ECC 2015; 17. Rugo HS et al. SABCS 2015;

Immunotherapy is under ACTIVE INVESTIGATION !!!!@#\$

Checkpoint blockade for cancer immunotherapy

Courtesy of Abul K Abbas, MD

Keynote 001: Kaplan-Meier Estimate of PFS

Analysis cut-off date: April 18, 2014.

Modified from E John Wherry, Nature Immunology 12: 492-499, 2011

Nature Reviews Cancer, Blank et al, 2019

Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: breakthroughs or backups

What's Next for Immunotherapy??

Liver Metastasis and Treatment Outcome with Anti-PD-1 in Patients with Melanoma and NSCLC

Paul C. Tumeh¹, Matthew D. Hellmann², Omid Hamid³, Katy K. Tsai⁴, Kimberly L. Loo⁴, Matthew A. Gubens⁴, Michael Rosenblum⁴,
Christina L. Harview¹, Janis M. Taube⁵, Nathan Handley⁴, Neharika Khurana⁴, Adi Nosrati⁴, Matthew F. Krummel⁴, Andrew Tucker¹, Eduardo V. Sosa⁴,
Phillip J. Sanchez¹, Nooriel Banayan¹, Juan C. Osorio², Dan L. Nguyen-Kim⁵, Jeremy Chang¹, I. Peter Shintaku¹, Peter D. Boasberg³, Emma J. Taylor¹,
Pamela N. Munster⁴, Alain P. Algazi⁴, Bartosz Chmielowski¹, Reinhard Dummer⁵,
Tristan R. Grogan¹, David Elashoff¹, Jimmy Hwang⁴, Simone M. Goldinger⁶, Edward B. Garon¹, Robert H. Pierce⁷, and Adil Daud⁴

Cancer Immunology Research

Partially exhausted tumor-infiltrating lymphocytes predict response to combination immunotherapy

Kimberly Loo,¹ Katy K. Tsai,¹ Kelly Mahuron,² Jacqueline Liu,¹ Mariela L. Pauli,³ Priscila M. Sandoval,³ Adi Nosrati,¹ James Lee,¹ Lawrence Chen,¹ Jimmy Hwang,⁵ Lauren S. Levine,¹ Matthew F. Krummel,⁴ Alain P. Algazi,¹ Michael D Alvarado,² Michael D. Rosenblum,³ and Adil I. Daud^{1,3}

Experimental liver metastasis suppresses immunity against distant subcutaneous tumor.

(A) C57BL/6 mice were each injected subcutaneously (SQ) with 5.0 x 10⁵ MC38 tumor cells with or without experimental liver (via intrahepatic injection) or lung metastasis (via tail vein injection) established as described in *methods*. Kaplan Meier curves of percent mice survival are shown (mice with BCS < 2 or with tumor size > 2cm were sacrificed). (B) Kaplan Meier curves of mice with experimental liver metastasis, lung metastasis, or only subcutaneous tumor. (C) Seven days later, mice were intraperitoneally injected with 4 doses of anti-PD-1 mAb (100ug per dose, clone RMP 1-14), every other day. (D) Tumor growth curve of mice with experimental liver and lung metastasis treated with anti-PD-1 mAb.

James Lee MD PhD and Jeff Bluestone PhD

Rizvi et al, Science 2015

$\mathsf{IFN}\gamma$ and Expanded Immune Signatures Correlate With Response to Pembrolizumab in Melanoma

^aDevelopment of the expanded immune signature was performed in an unsupervised manner by individuals blinded to response data. Nominal one-sided *P* value from logistic regression (for best overall response per RECIST v1.1) or Cox regression (for PFS and OS).

IFNγ Signature validated with clinical outcome

IFNy Signature or Tertiary Lymphoid Structure Signature?

CCL2 CCL3 CCL4 CCL5 CCL8 **CCL18 CCL19** CXCL9 CXCL10 CXCL11

Domenico Coppola,* Michael Nebozhyn,* Farah Khalil,* Hongyue Dai,[†] Timothy Yeatman,[‡] Andrey Loboda,[†] and James J. Mulé[§]

From the Anatomic Pathology Division,* the Gastrointestinal Oncology Program,[‡] and the Cutaneous Oncology Program,[§] Moffitt Cancer Center, Tampa, Florida; and Oncology Molecular Profiling,[†] Merck Research Laboratories, West Point, Pennsylvania

CD21

CLINICAL MEDICINE

Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma

Adil I. Daud,¹ Kimberly Loo,¹ Mariela L. Pauli,² Robert Sanchez-Rodriguez,² Priscila Munoz Sandoval,² Keyon Taravati,² Katy Tsai,¹ Adi Nosrati,¹ Lorenzo Nardo,³ Michael D. Alvarado,¹ Alain P. Algazi,¹ Miguel H. Pampaloni,⁴ Iryna V. Lobach,¹ Jimmy Hwang,¹ Robert H. Pierce,⁵ Iris K. Gratz,⁶ Matthew F. Krummel,⁴ and Michael D. Rosenblum²

¹Helen Diller Comprehensive Cancer Center, ²Department of Dermatology, ³Department of Radiology, and ⁴Department of Pathology, UCSF, San Francisco, California, USA. ⁵Oncosec Inc., San Diego, California, USA. ⁶Department of Molecular Biology, University of Salzburg, Salzburg, Austria.

0.00

0.47

98.5

0.20

3.41

89.7

FMO

0.00

0.15

98.8

104 0.03

2.94

 $0 \ 10^3 \ 10^4 \ 10^5$

0 90.9

10⁵

10³

С

Blood

Tumor PD-1 PE-Cy7

9

8

A transcriptionally and functionally distinct PD-1⁺ CD8⁺ T cell pool with predictive potential in nonsmall-cell lung cancer treated with PD-1 blockade

medicine

Daniela S. Thommen^{12*}, Viktor H. Koelzer^{3,4,13}, Petra Herzig^{1,13}, Andreas Roller^{5,13}, Marcel Trefny⁵, Sarah Dimeloe⁶, Anna Kiialainen⁵, Jonathan Hanhart³, Catherine Schill⁷, Christoph Hess⁶, Spasenija Savic Prince⁸, Mark Wiese⁹, Didier Lardinois⁹, Ping-Chih Ho¹⁰, Christian Klein¹¹, Vaios Karanikas¹¹, Kirsten D. Mertz³, Ton N. Schumacher^{2,14} and Alfred Zippelius^{11,2,14*}

Cell

F

25

NK Cells Stimulate Recruitment of cDC1 into the **Tumor Microenvironment Promoting Cancer** Immune Control

G

25

Graphical Abstract

Authors Jan P. Böttcher, Eduardo Bonavita, Probir Chakravarty, ..., Erik Sahai, Santiago Zelenay, Caetano Reis e Sousa

Correspondence j.boettcher@tum.de (J.P.B.), caetano@crick.ac.uk (C.R.e.S.)

In Brief

Natural killer cells recruit dendritic cells to the tumor microenvironment, and disruption of this process results in cancer immune evasion.

С

(log2)

Š

D

Ε

40

HNSC

CD1c⁺ cDC2 CD141⁺ cDC1 pDCs

10-

0

0

10

cDC1 signature (log2)

Che

T cells T cells

19

r = 0.737

P < 0.0001

30

20

cDC1 signature (log2)

10

Ô.

Mono

HNSC

r = 0.460

P < 0.0001

20 30

LUAD

(Z⁶0)

Control

A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments

Kevin C. Barry[®]^{1,2}, Joy Hsu^{1,2}, Miranda L. Broz^{1,2}, Francisco J. Cueto^{1,3,4}, Mikhail Binnewies¹, Alexis J. Combes^{1,2}, Amanda E. Nelson^{1,2}, Kimberly Loo^{2,5,6}, Raj Kumar^{1,2}, Michael D. Rosenblum⁶, Michael D. Alvarado⁶, Denise M. Wolf⁷, Dusan Bogunovic⁸, Nina Bhardwaj⁹, Adil I. Daud[®]⁶, Patrick K. Ha[®]¹⁰, William R. Ryan¹⁰, Joshua L. Pollack¹¹, Bushra Samad^{1,2}, Saurabh Asthana², Vincent Chan^{1,2} and Matthew F. Krummel[®]^{1,2*}

ARTICLE https://doi.org/10.1038/s41467-019-12776-4 OPEN

Dietary tryptophan links encephalogenicity of autoreactive T cells with gut microbial ecology

Jana K. Sonner ^{1,2,13,19}, Melanie Keil^{1,19}, Maren Falk-Paulsen^{3,19}, Neha Mishra³, Ateequr Rehman³, Magdalena Kramer^{1,2}, Katrin Deumelandt^{1,2,14}, Julian Röwe¹, Khwab Sanghvi^{1,2}, Lara Wolf^{1,2}, Anna von Landenberg^{1,2}, Hendrik Wolff^{4,21}, Richa Bharti³, Iris Oezen¹, Tobias V. Lanz ^{1,15}, Florian Wanke^{5,16}, Yilang Tang ^{5,17}, Ines Brandao⁶, Soumya R. Mohapatra⁷, Lisa Epping⁸, Alexandra Grill⁶, Ralph Röth⁹, Beate Niesler ⁹, Sven G. Meuth⁸, Christiane A. Opitz ^{7,10}, Jürgen G. Okun¹¹, Christoph Reinhardt ⁶, Florian C. Kurschus^{5,18}, Wolfgang Wick ¹², Helge B. Bode ⁴, Philip Rosenstiel^{3,20} & Michael Platten ^{1,2,20*}

Fig. 2 DTR inhibits EAE. **a** Mean clinical EAE scores and cumulative scores (+trp: n = 10; -trp, n = 10). **b** Plasma amino acid concentrations 16 days postimmunization (n = 6). **c** Blood-brain barrier (BBB) disruption in spinal cord as assessed by Evan's Blue (EB) on d15 post-immunization (+trp: n = 8; -trp: n = 7). **d** Flow cytometric analysis of leukocyte infiltration into the spinal cord on d18 post-immunization (+trp: n = 5; -trp: n = 6). Displayed as CD45⁺ cells of live single cells. **e-g** Spinal cord sections of EAE mice were stained for **e** T cells (n = 5 vs. n = 5), **f** macrophages (n = 5 vs. n = 5), and **g** demyelination (n = 4 vs. n = 5). Scale bars: 250 µm. Statistics: Mann-Whitney *U*-test for **a**, **g** unpaired two-tailed Student's *t*-test for **b-f**. Each dot represents one individual mouse. Data are presented as mean ± SEM. Source data are provided as a Source Data file Metabolic reprograming of anti-tumor immunity Madhusudhanan Sukumar^{1,2}, Rigel J Kishton^{1,2} and Nicholas P Restifo^{1,2}

Accommodation archetypes

Traditional perspectives often reduce immune responses to tolerance and destruction. Emerging data show that the immune system has a larger palette of modular archetypes that accommodate healthy tissue. These archetypes can contribute to disease when dysregulated and/or dysfunctional.

Model Proposed by Max Krummel PhD, UCSF

IL-12 is a key mediator of communication between DC/macrophages and effector-T cells and NK Cells

In-vivo Electroporation

Injection of plasmid

Electrode Insertion

Electroporation

Daud et al, Phase I trial of pIL-12 electroporation, J Clin Oncol

Day 5

Patient 14, Cohort 5 Post Limb Perfusion

Day 513

Figure 2. Best overall response in A. Sum of treated lesions and in B. Sum of untreated lesions. C. Overall change in tumor burden over time (N = 48).

- 100% of patients with >30% of TILs exhibiting CTLA4^{hi}PD-1^{hi} biomarker phenotype went on to respond to anti-PD-1 (PR or CR)
- 100% of patients with <20% of TLs exhibiting CTLA4^{hi}PD-1^{hi} biomarker phenotype failed to respond to anti-PD-1 (SD or PD)
- 60% of patients with 20-30% of TILs exhibiting CTLA4^{hi}PD-1^{hi} biomarker phenotype responded to anti-PD-1 (PR or CR)

Pre-Tx peCTL%	by RECIST	by Clinical Assessmnet
22	PD	PD
11	CR	CR
NA	PD	PR
0	PD	PD
8	CR	CR
1	PD	PD
4	CR	CR
9	PD	PD
<1	SD	SD
2	PD	PD
<1	CR	CR
22	CR	CR
19	PD	PD
<1	SD	SD
11	CR	CR
14	CR	CR
13	PD	PD
19	CR	CR
0	§	CR
NA	PD	PD
NA	PR	PR
NA	PD	PD

PD by RECIST s/p ipilimumab Nivolumab and Pembrolizumab Extensive disease in the left LE

--- Patient with progression of non-targets

Combination Therapy

SOCS1

°0

P

0

O

8

Successful anti-PD-1 cancer immunotherapy requires IL-12

Christopher S. Garris^{1,2*}, Sean P. Arlauckas^{1,3*}, Rainer H. Kohler¹, Marcel P. Trefny^{4,5}, Seth Garren¹, Cécile Piot¹, Camilla Engblom¹, Christina Pfirschke¹, Gordon J. Freeman⁶, Sarah E. Warren⁷, SuFey Ong⁷, Erica Browning⁸, Christopher G. Twitty⁸, Robert H. Pierce⁸ Mai H. Le⁸, Alain P. Algazi⁹, Adil I. Daud⁹, Sara I. Pai¹⁰, Alfred Zippelius⁴, Ralph Weissleder^{1,3,11}, Mikael J. Pittet^{1,3#}

Emerging Picture of Immunotherapy Metabolic Reprogramming CD4 Gender **NK Cells** Tumor Specific Antigens cDC1 Tumor Bulk Cancer-Testis cDC2 Antigens Obesitv CD8 Age expression Microbiome **NK Cells** Loss of HLA Tumor Type Metastatic expression **Cell Killing** Site

Acknowledgements

- Mike Rosenblum MD PhD
- Kelly Mahuron MD
- Lauren Levine MD
- James Lee MD
- Matt Spitzer PhD
- Max Krummel PhD
- Katy K Tsai MD
- Alain Algazi MD
- Kimberly Loo MD

