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2017: Critical questions to
address

* How to increase fraction of patients with durable
responses?

* How to minimize autoimmunity?



Canqer
vaccine

Expand and broaden the
T cell repertoire by
iInducing tumor-specific T
cells

Generate highly specific
anti-tumor immunity with
fewer side effects on vital
tissues
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PERSPECTIVE

Cancer immunotherapy: moving beyond current

vaccines

Steven A Rosenberg, James C Yang & Nicholas P Restifo

Great progress has been made in the field of tumor
immunology in the past decade, but optimism about the
clinical application of currently available cancer vaccine
approaches is based more on surrogate endpoints than on
clinical tumor regression. In our cancer vaccine trials of 440
patients, the objective response rate was low (2.6%), and

comparable to the results obtained by others. We consider here
results in cancer vaccine trials and highlight alternate
strategies that mediate cancer regression in preclinical and
clinical models.

We now know the molecular identities of many tumor-associated
antigens, and this knowledge has provided a major stimulus for the
development of new immunotherapies for the treatment of patients
with solid cancers!. In the field of cancer immunotherapy, most
enthusiasm has been directed at the use of cancer vaccines—active
immunizations designed to treat growing tumors. A recent review of
endritic cell vaccines mentioned 98 published studies involving over
1,000 patients®. A tabulation in 2003 listed 216 ongoing vaccine clini-
cal trials in cancer patients?. These studies were conducted, and others
ae underway, despite the absence of convincing animal data that can-

patients who achieved clinical responses, many cancer vaccine trials
have been optimistically reported because surrogate or subjective
endpoints were achieved. Sensitive techniques such as tetramer or
ELISpot assays have been used to demonstrate the generation in vivo
of antitumor T cells in vaccinated patients, but the scarcity of clinical
responses in these patients has made it difficult to validate any of
these assays as a useful surrogate of clinical response.

Analysis of trials using standard oncologic criteria

Standard oncologic criteria for evaluating and reporting objective
clinical responses to treatment are well established in oncology, and
adherence to these guidelines is essential in comparing the results of
treatment protocols®8. A set of criteria proposed recently is the
Response Evaluation Criteria in Solid Tumors (RECIST): a 30%
reduction in the sum of the maximum diameters of lesions to indicate
a response, along with the appearance of no new or progressive
lesions. The most commonly used definition of objective clinical
response, however, is at least a 50% reduction in the sum of the prod-
ucts of the perpendicular diameters of all lesions without the 25%
growth of any lesion or the appearance of new lesions. The latter defi-
nition has been used in our analysis of our own protocols as well as

Pitfalls of the single antigen-targeting
vaccine, and a one size fits all approach




Evolution of methods for antigen discovery
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Somatic mutations have the
potential to generate neoantigens

Tumor cell Killer

Antigen
g T cell

Antigenic presentation
precursors

DNA
mutations

Proteolyt\ib
intermediates
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Lack of central tolerance for T cells
targeting antigen

Hitting the “sweet spot”

Tumor

Pathogens neoantigens
‘ Shared, overexpressed
tumor self-antigens |}
Self-
antigens

Tumor-specific expression of antigen

Hacohen CIR 2013



Growing compelling evidence for
neoantigens as effective tumor rejection

antigens

Neoantigen load associated
with better clinical outcome

Neoantigen-specific * T cells
are expanded in settings of
effective antitumor immunity

Neoantigen-specific CTLs kill
tumor cells in vitro and in vivo
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Can a personalized cancer vaccine
stimulate anti-tumor immunity Iin
humans?

Disease: melanoma
- stage lll/resectable
— stage |V

Ott & Hu Nature (2017)



Vaccine: up to 20 personalized neoantigens
as SLPs with adjuvant (polyICLC)

* DNA and RNA sequencing to
identify tumor-specific mutations

Target _
selection * HLA-typing
» Prediction of personalized
HLA-binding peptides
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The vaccine induces T cells against almost all pools

Spot forming cells / 10 PBMC
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Weeks following vaccination initiation

20% of selected neoantigens induced CD8 T cell responses
>30% of selected neoantigens induced CD4 T cell responses



Neoepitope-specific T cell responses are
largely restricted to mutated epitopes

Mutant exvivo Across 6 patients
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T cells recognize autologous melanoma cells
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Complete responses with a-PD-1 treatment for
2 patients with progression after Neovax
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**The overall response rate in patients with metastatic

melanoma is 35-40%; CR rate is 5%. .



Enhanced breadth of neoepitope-specific T cell
responses after Neovax and a-PD-1 treatment
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Week16 a-PD-1
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NeoVax (NCT01970358) 6 pts.

Up to 20 long neopeptides + Poly-ICLC, SC
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Table 1. Summary of Neoantigen Vaccines

Ott et al. [4]
No. of patients 6
Vaccine Synthetic peptide+
poly IC:LC
Administration route Subcutaneous
Epitope length 15-30 aa
No. of epitopes/patient 13-20
No. of doses 7
Immunogenicity 91 peptides
(total no. peptides tested)
CD8* T cell response rate” 16%
CD4* T cell response rate” 60%

8Ex vivo manufactured and pulsed with synthetic peptides.

IVAC MUTANOME (NCT02035956) 13 Pts.

Vaccination with shared e :
tumor antigen RNAs Vaccination with
(Tyrosinase, NY-ESO-1) neoantigen RNAs, IN

I W)
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N

Sahin et al. [3]
13
RNA

Intranodal
27 aa

10

8-20

125 epitopes

25%
66%

°lmmune response rate to MHC class | or class Il epitopes (per vaccine trial).

Linette & Carreno Trends in Molecular Medicine (2017)




Do neoantigen-specific CD4+ T cells
change their state with vaccination?



scRNAseq of neoantigen-specific
CD4+ T cells
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Major shifts In gene expression post-vax

« Shutting off of genes that promote naive T cell homeostatic survival (IL7R)
and fate (FOXP1)

« Upregulated: genes involved in energy metabolism needed for cell
proliferation and growth (SLC2A3)
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Can such a vaccination approach
be tested Iin lower mutation rate
tumors?



Testing Neovax in a lower mutation rate tumor
and within context of SOC therapy: GBM
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A more challenging study cohort....

« 11 enrolled; 8 vaccines generated and dosed

\accination
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With fewer neoantigen targets....
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But circulating neoantigen-specific responses

still detected
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Improving
antigen prediction

Vaccine
Tumor target.
sequencing selection

info

* Mass spectrometric
detection of presented
antigens on tumor

¢ Improved MHC class /Il
epitope prediction

* Understanding antigen
processing

* |dentifying additional classes

of somatic alteration

Developing
combination therapy

Personal
neoantigen
vaccine

Developing and using
pre-clinical models

Neoantigen
vaccine S

With
*CPB
e Agonistic antibody
* Radiotherapy
e Chemotherapy
e Targeted inhibitors

To re-evaluate
e Formulation
e Adjuvant
* Delivery
e Dose
e Schedule
e Route



Can we improve prediction of
cancer neoantigen targets?



Jenn Abelin Derin Keskin Sisi Sarkizova

Steve Carr Nir Hacohen Mike Rooney



Somatic mutations have the
potential to generate neoantigens

Tumor cell Antigen Killer
Antigenic presentation T cell
precursors
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Somatic mutations have the
potential to generate neoantigens

Tumor cell Antigen Killer
Antigenic presentation T cell




Single- vs multi- allele HLA peptide
sequencing by MS
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« Single HLA allele

« 10x lower sample input

« Advances in instrumentation
* Improved search strategies

Abelin Keskin & Sarkizova
Immunity 2017




>24,000 HLA-assoclated peptides
Identified for 16 alleles
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ldentification of new peptide motifs
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Quantitative contributions of expression,
localization, cleavage

Affinity
(28.3%)

Unknown
(44.8%)

Localization (<1%) ‘
\ Protein expression (<1%

Cleavability (7.9%) Stability (<1%)



Building a new predictor

Input layer:

Neural network models features

Hidden layer:
50 units

Output layer
2 types of ensemble models —

— Peptide intrinsic features only

— Peptide intrinsic + extrinsic features (expression and
cleavability)



Novel predictors based on single-allele MS data
outperform NetMHC on external datasets
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MS score
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Summary

Next-generation sequencing capabilities now enable
systematic mining of the genome for potential neoantigens
as well as characterization of the iImmune context

Tumor neoantigens appear to be an important class of
Immunologic targets against which tumor-specific
responses can be generated

Phase | clinical trial: safe, feasible and capable of eliciting
strong T cell responses in a clinical setting unconfounded
by prior or intercurrent therapy

On the horizon: combination with CPB and improved
prediction algorithms
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