Cancer Immunotherapy by PD1& PDL1 Self Tolerance Blockade John Powderly MD,

President, Carolina BioOncology Institute, PLLC Adjunct Clinical Assistant Professor Medicine Duke & UNC

Financial Disclosures

- BioPharma Trial Sponsors
 - Abbvie
 - Amgen
 - Amplimmune
 - Bristol-Myers Squibb
 - Celldex
 - Fluxion
 - Genentech/Roche
 - 6 GSK
 - Imclone/Lilly
 - Incyte
 - Merck
 - Millennium
 - NovaRx
 - Peregrine
 - Progenics
 - Regeneron
 - Sanofi-aventis

- Speakers Bureau
 - BMS
 - Genentech
 - Dendreon
 - Merck
- Stock Ownership: BioCytics
- Honoraria: BMS, Genentech

Overview

- Background & History Immunotherapy
 - Immune self tolerance
 - Melanoma, vitiligo, animal models
- Immune Correlates of Cancer Survival
 - Auto-immunity
 - Tumor infiltrating lymphocytes (TIL)
- Pharmacologic Self Tolerance Blockade
 - Central (priming phase) vrs Peripheral (effector phase)
 - PD1 & case presentation
 - PDL1 & case presentation
 - Biomarkers

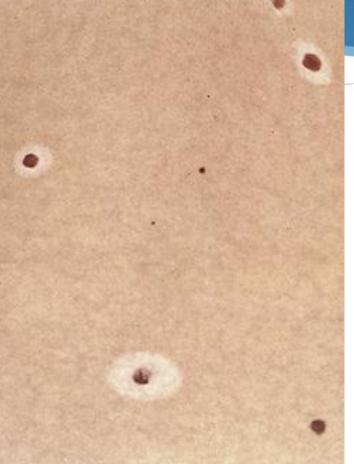
Historical Cases of Spontaneous Regression of Cancer

5PONTANEOUS REGRESSION of CANCER

A Study and Abstract of Reports in the World Medical Literature and of Personal Communications Concerning Spontaneous Regression of Malignant Disease

TILDEN C. EVERSON M.D., Ph.D., F.A.C.S. Clinical Professor of Surgery, University of Illinois College of Medicine

WARREN H. COLE M.D., F.A.C.S., F.R.C.S. (Eng., Hon.), *Professor of Surgery and Head of the Department of Surgery*, *Liversity of Illinois College of Medicine*


W. B. SAUNDERS COMPANY

Philadelphia and London 1966

- Rohdenburg summarized 185 spontaneous regressions, 1918
- Fauvet reported 202 cases between 1960–1964
- Boyd reported 98 cases in 1966
- Everson and Cole described 176 cases between 1900–1960
- Challis summarized 489 cases between 1900–1987
- Hobohm, in a meta-analysis, investigated about 1000 cases
 - Frequency was estimated to be about 1 in 100,000 cancers

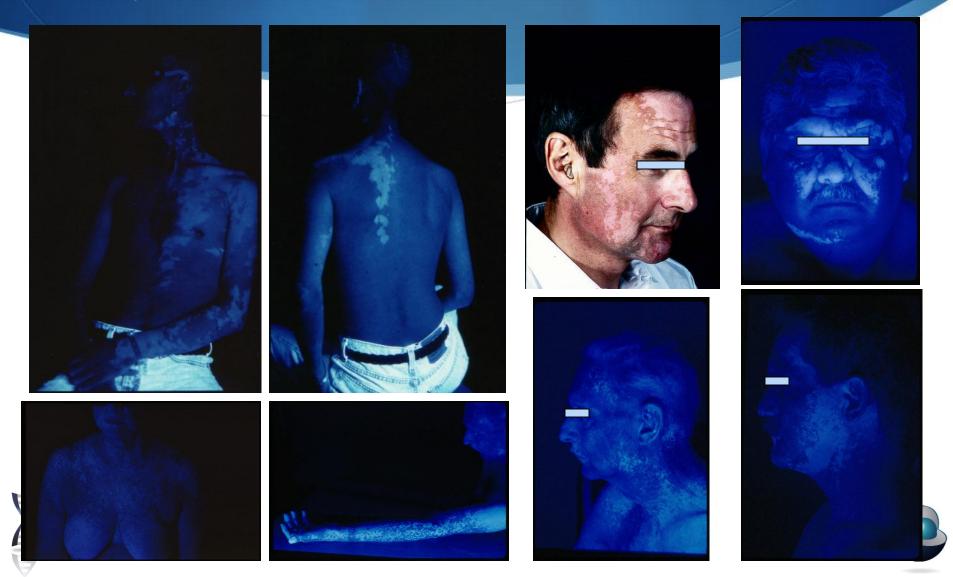
Why Study Malignant Melanoma in Tumor Immunology? Can See It

Halo Nevi

Model for Melanoma regression

Human and animal models

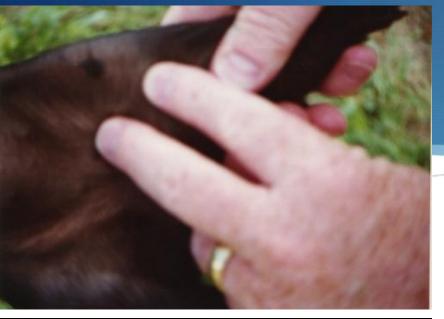
Occurs with auto-immunity to melanocyte selfantigens (vitiligo) easily seen Specific T-cell and humoral responses occur Break self-tolerance


Vitiligo patterns may be a template of antigen repertoire

Immune system can recognize any tumor (not just melanoma)

IL-2 Melanoma Immunotherapy

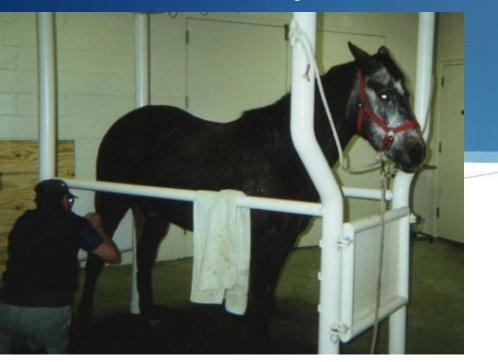
Breaking self tolerance with vitiligo, Strongest clinical marker of melanoma regression


Animal Models of Immunotherapy

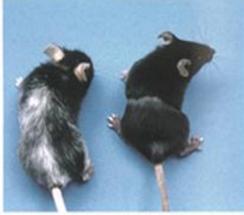
12/11/

7

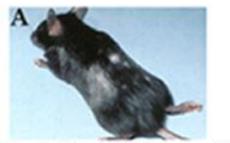
Sinclair Swine Melanoma



Grey Horse Melanoma



Mouse Melanoma Immunotherapy Break vrs Block Self-Tolerance


Anti-TRP1 murine Ab Hara, Takechi, Houghton 1995 Passive

Insect Expressed TRP1 vaccination Naftzger, Hara, Houghton 1996 Active, Mono-Valent, Non-Self

Vaccinia virus encoding TRP1 Overwijk, Restifo, Rosenberg 1998 Active, Mono-Valent, Altered-Self

Vaccination GM-CSF expressing irradiated murine melanomas CTLA-4 mAb blockade Van Ela, Hurwitz, Allison 1999 Active, Poly-Valent, Self Block Self-Tolerance

Alphavirus encoding TRP1 Lietner, Restifo 2003 Active, Mono-Valent, Altered-Self

Chemokine knockout mice CCR5-/- and MIP1α -/-Melanoma lysate pulsed DCs Ng-Cashin, Powderly, Serody 2003 Active, Poly-Valent, Self

Adoptive T-Cell Transfer Vaccinia, Fowlpox Virus Encoding mutated gp100 Overwijk, Restifo 2004 Active, Adoptive, Mono-Valent Altered Self, Mutated Peptide

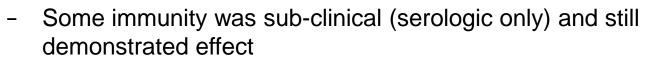
Immune Correlates of Cancer Survival

Presence of Tumor Infiltrating Lymphocytes Correlate with Survival

Prognostic Influence of TIL in Cancer: A Systematic Review with Meta-Analysis Gooden et al; British Journal Cancer 2011; 105: 93-103

52 studies that included >100 patients each study, Total 12,445 patients. Median f/u 4 years, ratios CD3:CD4:CD8:FoxP3

Results: CD3, CD8 TIL favorable effect on survival. High CD8:FoxP3 ratio most predictive survival.


Study or subgroup	Log[Hazard ratio]	SE	Weight	Hazard ratio IV, random, 95% CI	Hazard ratio IV, random, 95% CI
Overall survival					
Adams 2009	-0.53	0.26	4.6%	0.59 [0.35, 0.98]	
Barnett 2010	-0.46	0.18	6.9%	0.63 [0.44, 0.90]	
Clarke 2009	-0.17	0.08	10.9%	0.84 [0.72, 0.99]	
Galon 2006	-0.82	0.16	7.6%	0.44 [0.32, 0.60]	
Gao 2007	-0.17	0.15	8.0%	0.84 [0.63, 1.13]	
Hiraoka 2006	0.21	0.3	3.8%	1.23 [0.69, 2.22]	
Jensen 2009	0.2	0.24	5.1%	1.22 [0.76, 1.96]	
Jordanova 2008	-0.07	0.43	2.2%	0.93 [0.40, 2.17]	
Kasajima 2010	-0.74	0.25	4.9%	0.48 [0.29, 0.78]	
Lee 2008	-0.54	0.25	4.9%	0.58 [0.36, 0.95]	
Nosho 2010	-0.3	0.15	8.0%	0.74 [0.55, 0.99]	
Ruffini 2009	-0.25	0.11	9.7%	0.78 [0.63, 0.97]	
Sato 2005	-0.67	0.27	4.4%	0.51 [0.30, 0.87]	
Shen 2010	-0.22	0.33	3.3%	0.80 [0.42, 1.53]	
Zingg 2010	-0.84	0.24	5.1%	0.43 [0.27, 0.69]	
Zlobec 2007	-0.15	0.09	10.5%	0.86 [0.72, 1.03]	
Subtotal (95% CI)			100.0%	0.71 [0.62, 0.82]	•
	04; χ ² = 36.85, df = 15 Z = 4.84 (P < 0.00001)	-	001);	59%	
Disease-specific survi	val				
Al Shibli 2008	-0.44	0.19	13.8%	0.64 [0.44, 0.93]	
Chiba 2004	-0.89	0.18	14.1%	0.41 [0.29, 0.58]	
De Jong 2009	-1.17	0.28	10.9%	0.31 [0.18, 0.54]	
Jensen 2009	0.36	0.27	11.2%	1.43 [0.84, 2.43]	+
Leffers 2008	-0.39	0.2	13.5%	0.68 [0.46, 1.00]	
Nosho 2010	-0.49	0.19	13.8%	0.61 [0.42, 0.89]	
Prall 2004	-0.62	0.29	10.6%	0.54 [0.30, 0.95]	
Sorbye 2011	-0.05	0.24	12.1%	0.95 [0.59, 1.52]	
Subtotal (95% CI)			100.0%	0.63 [0.47, 0.84]	•
Heterogeneity: $\tau^2 = 0$. Test for overall effect:	12; $\chi^2 = 24.63$, df = 7 (Z = 3.14 (P = 0.002)	P = 0.0	009); <i>I</i> ² = 7	72%	
Progression / disease	/ relapse-free survival				
De Jong 2009	-0.6	0.26	16.2%	0.55 [0.33, 0.91]	
Galon 2006	-0.77	0.17	20.2%	0.46 [0.33, 0.65]	
Gao 2007	-0.24	0.16	20.6%	0.79 [0.57, 1.08]	
Jensen 2009	0.25	0.24	17.1%	1.28 [0.80, 2.06]	
Nedergaard 2007	-0.89	0.34	13.0%	0.41 [0.21, 0.80]	
Prall 2004	-0.84	0.34	13.0%	0.43 [0.22, 0.84]	
Subtotal (95% CI)	5.04	0.01	100.0%	0.62 [0.44, 0.87]	
	13; $\chi^2 = 17.10$, df = 5 (Z = 2.73 ($P = 0.006$)	P= 0.0			
				-	
				0.1	0.2 0.5 1 2 5 1
				Fa	vours CD8 high Favours CD8 low

Autoimmunity Associated With Clinical Response to Immune Therapy M. Dsis 2011 JCO

- Prospective observational study of 3,000 patients evaluated clinical factors associated with favorable outcome
 - Vitiligo predictive in multivariate analysis (p = .006 for OS)
- Study evaluating the laboratory and clinical characteristics of 374 patients treated with IL-2 to determine biomarkers of response (NCI)
 - Thyroid dysfunction (p = .01) and vitiligo (p < .01) were predictors of increased survival
- Trial of 198 MM or RCC patients treated with ipilimumab suggested a higher response rate in patients who developed enterocolitis compared to those that did not (p = .0065) (NCI)
- Evaluation of 200 stage II/III melanoma patients treated with interferon; development of autoimmunity correlated with longer relapse-free survival (p
 001) as well as OS (p < 001)
 - < .001) as well as OS (*p* < .001)

Disis, 2011.

Tumor Immune Evasion

Immune system is exponentially more adaptable then tumor

Vaccines Are *The* greatest success story of modern medicine by eradicating infectious diseases.

So why don't cancer vaccines work?

Infections

Discriminate self from *non*-self

Tumors

Discriminate self from *altered*-self

• Every tumor cell potentially unique Discriminate *absence* of self

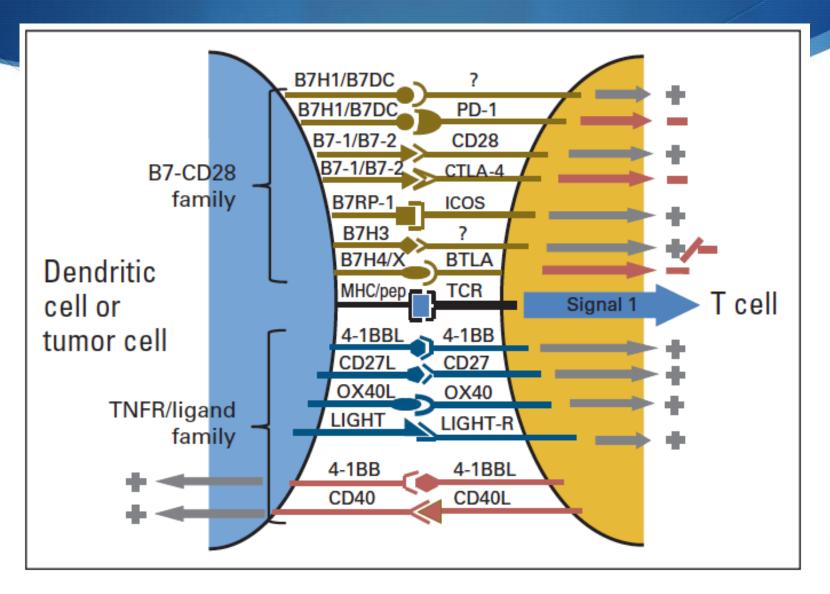
• Tumor cells lose HLA and antigens

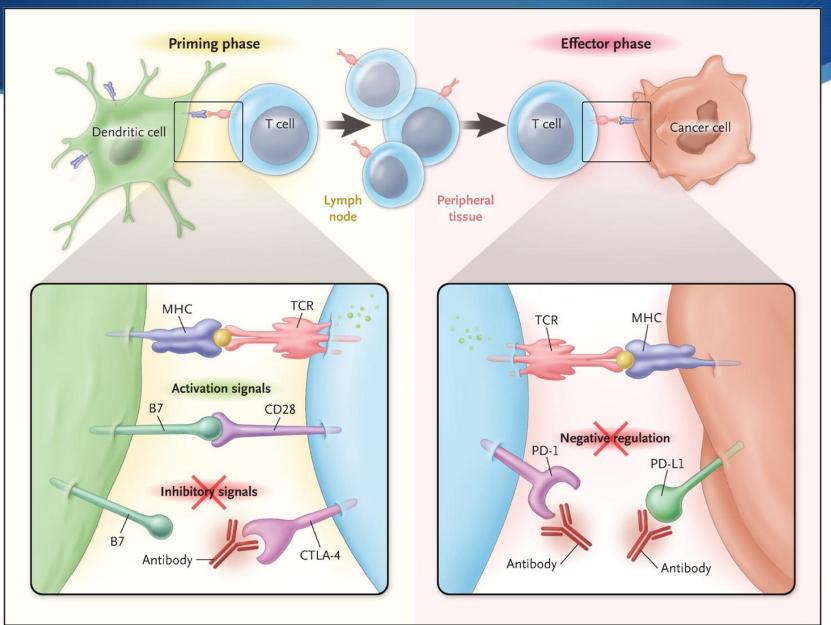
Self Tolerance = Self Preservation

98% anti-self lymphocytes undergo apoptosis Remaining T-cells >90% tolerizing surveillance

Pharmacologic Self-Tolerance Blockade (CTLA-4, PD1/PDL1) Induces Durable Tumor Regression

Cancer Self-Tolerance Blockade


- Self Tolerance: cancer is viewed as self & tolerated
- Self-tolerance blockade: cancer is viewed as foreign & rejected
- Tumors exploit mechanisms to suppress the host immune response
 - Immune checkpoints (CTLA-4, PD1/PDL1) abort immune responses
 - Co-opted by tumors to evade immune destruction
 - Immune checkpoint inhibitors can block self-tolerance of cancer, and enable anti-tumor immune destruction
 - Risk: auto-immunity
 - <u>Central</u> (priming phase) self tolerance blockade: CTLA4 in lymph node compartment during antigen presentation
 - Peripheral (effector phase) self tolerance blockade: PD1/PDL1 at site of tumor inflammation during lymphocyte infiltration


A

Immune Recognition & Tolerance

Adapted from "Cancer Immunotherapy Comes of Age" Topalian, Weiner, Pardoll, JCO 2011

Tumor Immunotherapy CTLA4 vrs PD1/PDL1 Antoni Ribas, NEJM epub June 2012

A

Self-Tolerance Blockade Drugs in Development

Anti-CTLA-4

- Ipilimumab (Fully human IgG1) FDA Approved 2011
- Tremelimumab (Fully human IgG2) Phase III
- Anti-PD-1
 - MDX-1106, Nivolumab, (Fully human IgG4) Phase III
 - CT-011 Pidilizumab (Humanized IgG1) Phase II
 - MK3475 Pembrolizumab (formerly Lambrolizumab) (Humanized IgG4) FDA Approved 2014
 - AMP-224 (B7-DC/IgG1fusion protein) Phase I-II
 - MEDI0680, AMP514 Phase I
- Anti-PD-L1
 - MDX-1105, (Fully human IgG4) Phase I
 - MPDL3280A, RG7446 Phase II
 - MEDI4736 Phase III
 - MSB0010718C Phase I

PD1 Blockade

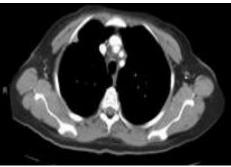
MDX-1106 001: Phase I Study of Single-Agent anti PD1 (MDX-1106, Nivolumab) in Refractory Solid Tumors: Safety, Clinical Activity, Pharmacodynamics, and Immunologic Correlates; Brahmer, Drake, Wollner, Powderly, Topalian et al, JCO 2010 28:3167

61yo BF Stage IV NSCLung CA (squamous) bilateral lung metastasis, bone mets. Prior treatment carboplatin/vinorelbine/bevacizumab

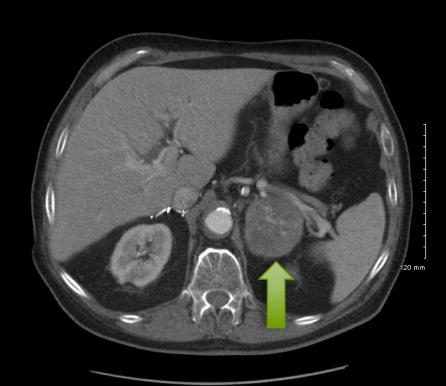
May 2007, Rx single dose of MDX-1106, anti-PD1mAb (1mg/kg IV)

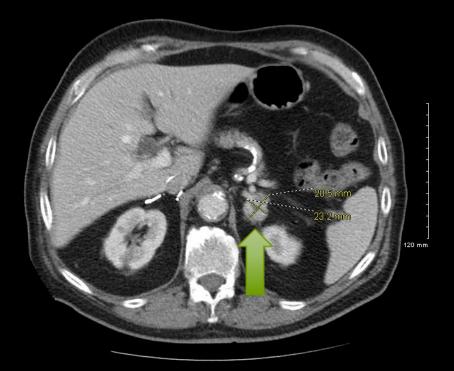
8 week 41% RECIST partial response, but 12 week scans showed new spine mets (mixed response).

Rechallenged MDX-1106, progressed


May 2007

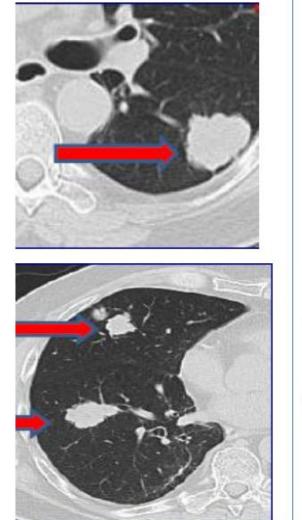
July 2007

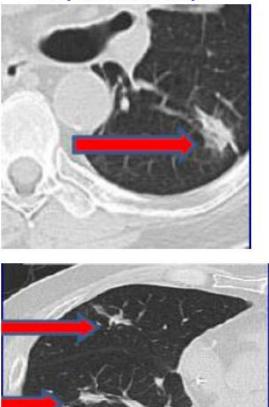



Durable Response Anti-PD1 mAb blockade Still Alive in Near Remission 2014 (5 years)

69yo WM Metastatic Squamous Cell Lung Cancer Failed prior carboplatin/paclitaxel/bevacizumab 2008

February 2009


September 2009



Anti-PD1 mAb Lung Cancer

A (12/17/2009)

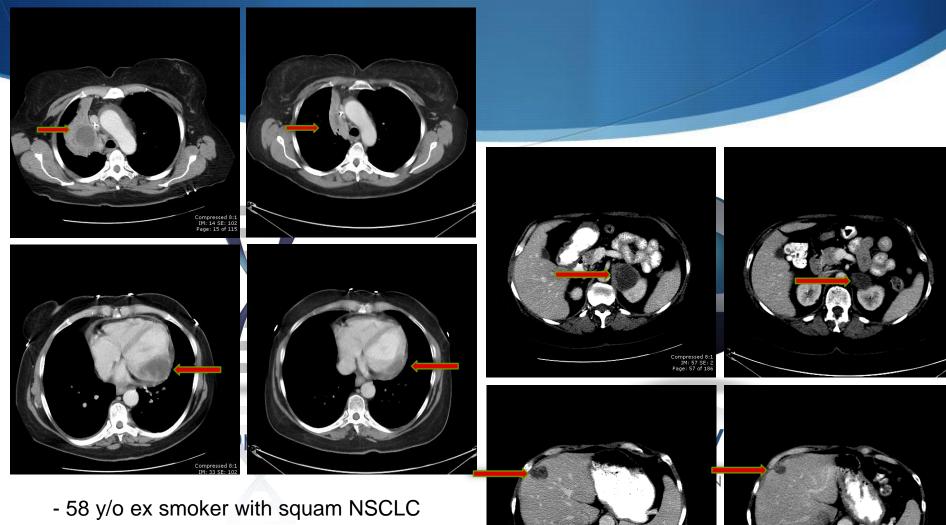
B (4/26/2010)

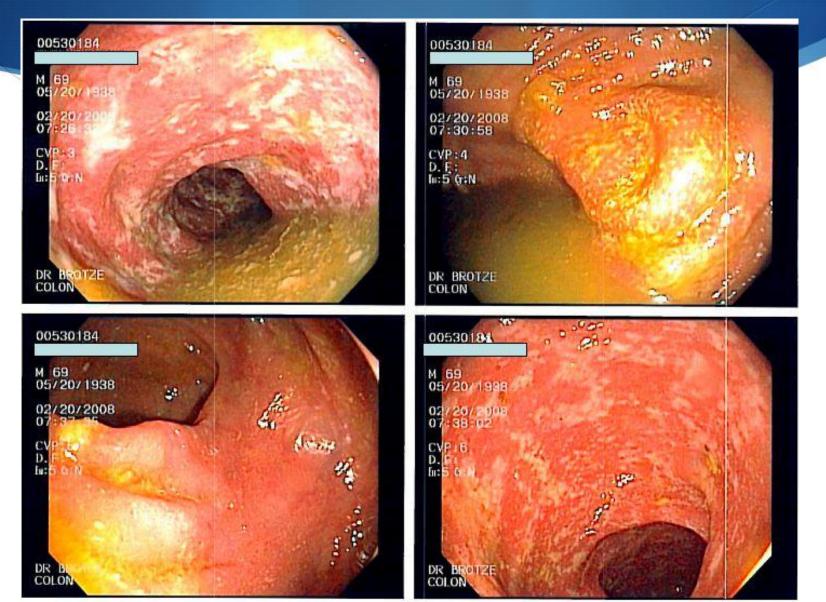
60 yr/male patientdiagnosed in 2002

 Intermittent responses but eventual progression on multiple prior combination chemotherapies and radiation therapy.

Rx MDX-1106 10mg/kg

A: Baseline


B: Cycle 2 assessment


Courtesy of Dr. Julie Brahmer and Dr. Suzanne Topalian, John Hopkins

Pre/ Post Anti-PD1 mAb (Jun / Oct '11)

- 4 prior tx for Stage IV disease
 - Left flank pain resolved within 2 mos
 - -Slides Dr. Gettinger, Yale

Anti-PD1 mAb Ocular Melanoma, Grade 3 Colitis

X

Nivolumab Phase I

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Safety, Activity, and Immune Correlates of Anti–PD-1 Antibody in Cancer

Suzanne L. Topalian, M.D., F. Stephen Hodi, M.D., Julie R. Brahmer, M.D.,
Scott N. Gettinger, M.D., David C. Smith, M.D., David F. McDermott, M.D.,
John D. Powderly, M.D., Richard D. Carvajal, M.D., Jeffrey A. Sosman, M.D.,
Michael B. Atkins, M.D., Philip D. Leming, M.D., David R. Spigel, M.D.,
Scott J. Antonia, M.D., Ph.D., Leora Horn, M.D., Charles G. Drake, M.D., Ph.D.,
Drew M. Pardoll, M.D., Ph.D., Lieping Chen, M.D., Ph.D.,
William H. Sharfman, M.D., Robert A. Anders, M.D., Ph.D.,
Janis M. Taube, M.D., Tracee L. McMiller, M.S., Haiying Xu, B.A.,
Alan J. Korman, Ph.D., Maria Jure-Kunkel, Ph.D., Ashok Gupta, M.D., Ph.D.,
Jon M. Wigginton, M.D., and Mario Sznol, M.D.

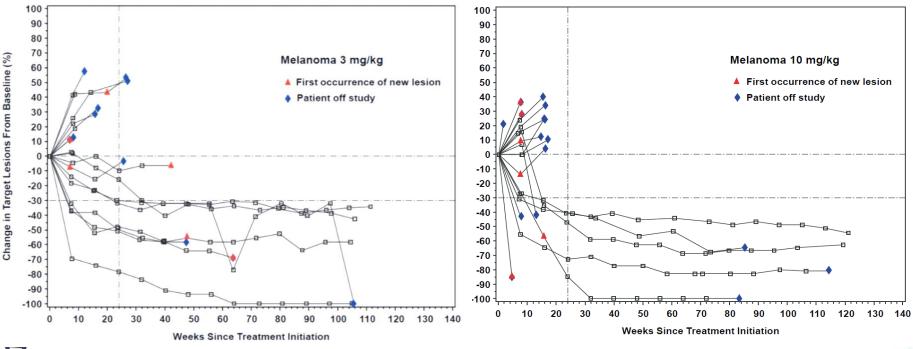
June 2012

ABSTRACT

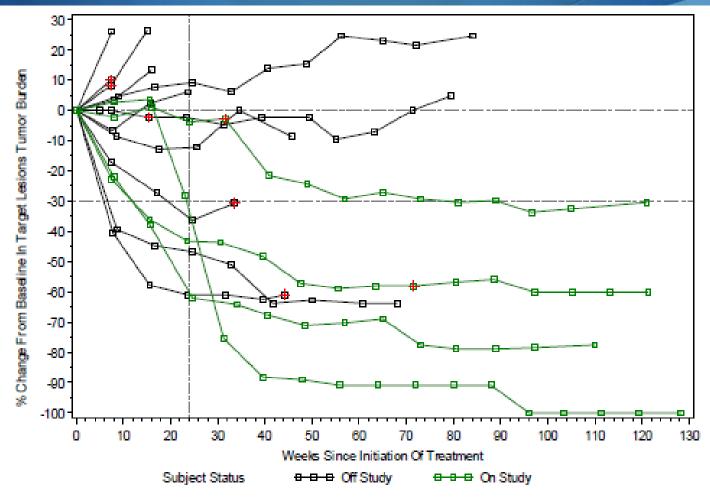
Safety, Activity and Immune Correlates of Anti-PD1Antibody (Nivolumab) in Cancer Topalian, Hodi, Brahmer, Gettinger, Smith, McDermott, Powderly, Drake, Sznol, et al NEJM epub June 2012, & ASCO 2012

- Phase Ib, 296 patients solid tumors stage IV
 - Rx monotherapy mAb Q2 weeks (4 doses over a 8 week cycle) upto 12 cycles until PD or CR
 - Cumulative objective response (RECIST)
 - Melanoma 28%
 - Renal Cell Cancer 27%
 - NonSmall Cell Lung 18%
 - 65% of Responders were durable > 1 year
 - Drug related AEs 14% (fatigue, cough, fever, rash, diarrhea, nausea)
 - Drug related Grade 3-4 toxicity 11%,
 - Grade 3-4 pneumonitis 1%, including 3 deaths from pneumonitis (2 NSCL, 1 renal)
 - MTD not reached; 5% of patients stopped therapy due to AEs.

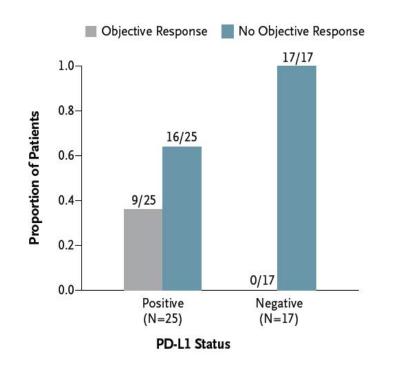
Among 42 archived tumors, response correlated with PDL1 tumor expression (p=0.006)

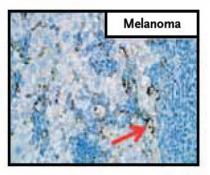

Safety, Activity and Immune Correlates of Anti-PD1 mAb (Nivolumab) in Cancer Topalian, Hodi, Brahmer, Gettinger, Smith, McDermott, Powderly, Drake, Sznol, et al NEJM epub June 2012, & ASCO 2012

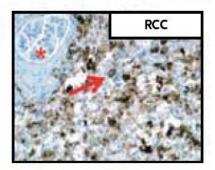
- Among the 122 NSCLC, all failed prior chemo (94%) or TKI (34%)
 - 55% failed > 3 regimens
- NSCLung objective responders, cumulative 18% response (CR+PR)
 - By dose: 1mg/kg (6%); 3mg/kg (32%); 10mg/kg (18%)
 - By histology: 33% in squamous; 12% nonsquamous;
- NSCLung Stable disease \geq 24 weeks = 7%
- NSCLung Clinical Benefit (CR+PR+SD) = 25%

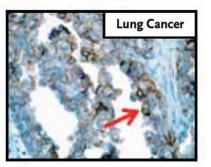


Anti-PD1 mAb Change in Melanoma Tumor Burden Topalian, NEJM 2012


- Among 296 patients with advanced solid tumors, included104 melanoma patients
 - ▲ 26 objective responses observed at doses ranging from 0.1–10.0 mg/kg
 - 3.0 mg per kilogram: Objective responses noted in 41%
 - SD lasting 24 wks or more was observed in 6 patients (6%)




Renal Cell Cancer anti-PD1 mAb 10mg/kg cohort



PDL1 Expression on Tumor Correlates with anti-PD1 mAb Response

Association between Pretreatment Tumor PD-L1 Expression and Clinical Response

Response Status	PD-L1-Positive	PD-L1–Negative	Total			
	number (percent)					
Objective response	9 (36)	0	9 (21)			
No objective response	16 (64)	17 (100)	33 (79)			
All	25	17	42			

P=0.006 for association by Fisher's exact test

В

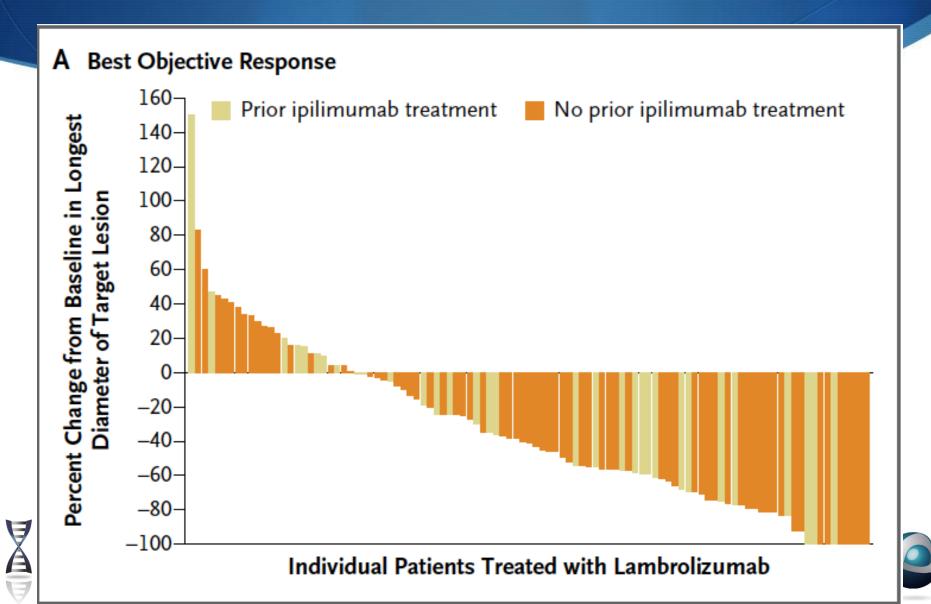
Pembrolizumab (Formally Lambrolizumab)

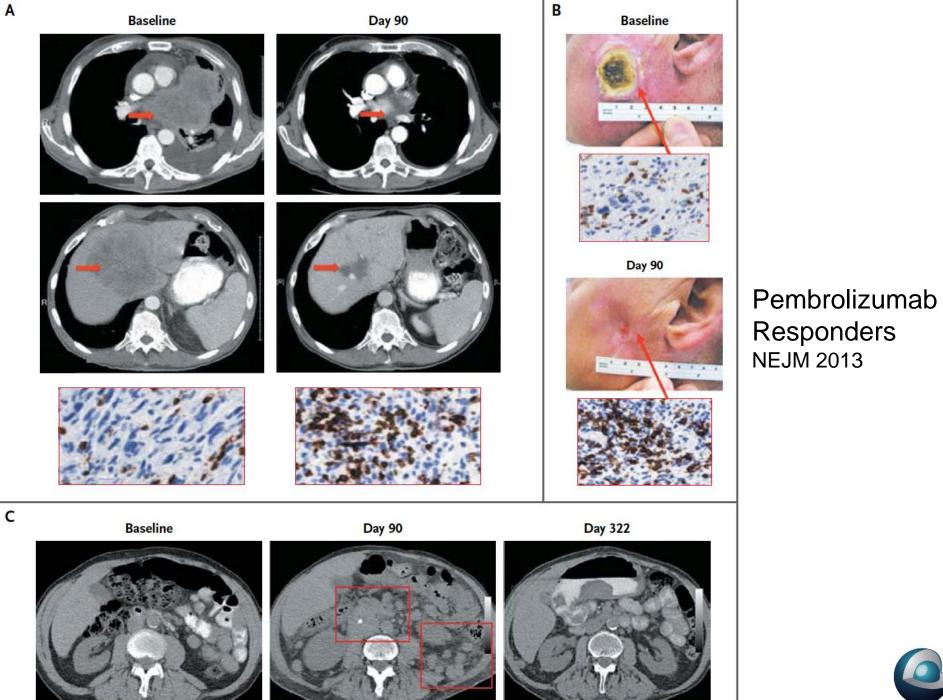
The NEW ENGLAND JOURNAL of MEDICINE 2013

ORIGINAL ARTICLE

Safety and Tumor Responses with Lambrolizumab (Anti-PD-1) in Melanoma

Omid Hamid, M.D., Caroline Robert, M.D., Ph.D., Adil Daud, M.D., F. Stephen Hodi, M.D., Wen-Jen Hwu, M.D., Ph.D., Richard Kefford, M.D., Ph.D., Jedd D. Wolchok, M.D., Ph.D., Peter Hersey, M.D., Ph.D., Richard W. Joseph, M.D., Jeffrey S. Weber, M.D., Ph.D., Roxana Dronca, M.D., Tara C. Gangadhar, M.D., Amita Patnaik, M.D., Hassane Zarour, M.D., Anthony M. Joshua, M.B., B.S., Ph.D., Kevin Gergich, M.A., Jeroen Elassaiss-Schaap, Ph.D., Alain Algazi, M.D., Christine Mateus, M.D., Peter Boasberg, M.D., Paul C. Tumeh, M.D., Bartosz Chmielowski, M.D., Ph.D., Scot W. Ebbinghaus, M.D., Xiaoyun Nicole Li, Ph.D., S. Peter Kang, M.D., and Antoni Ribas, M.D., Ph.D.

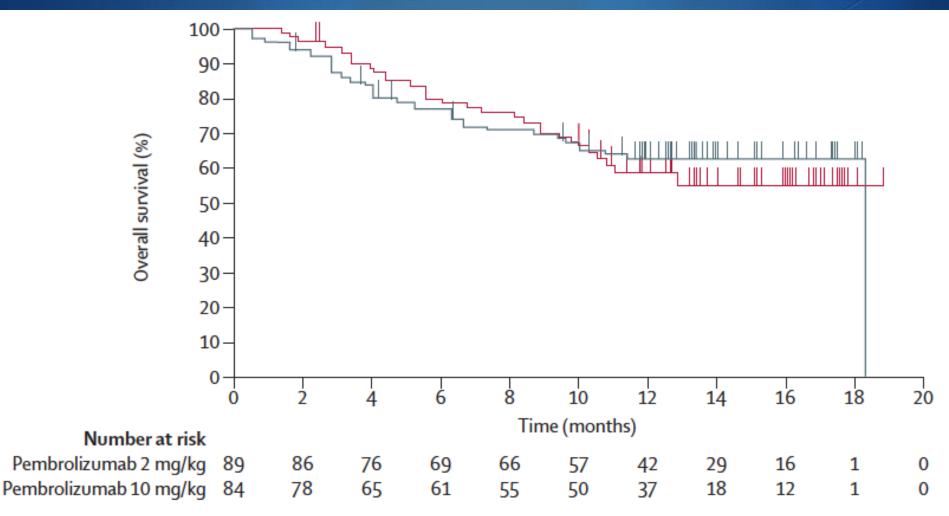

Safety and Tumor Responses with Lambrolizumab (Pembrolizumab, Anti-PD1) in Melanoma Hamid NEJM 2013


- 135 Stage IV melanoma patients (both lpi naïve and lpi failures)
 - 38% RECIST response rate in all dose cohorts
 - 52% RECIST highest in cohort of 10mg/kg Q2 weeks.
 - No statistical significant difference in response rate with prior lpi exposure (but trend favored prior lpi exposure)
 - Median progression free survival > 7 months
 - 79% any grade drug related adverse events (fatigue, asthenia, fever, chills, myalgias, HA). 21% had rash & pruritis, 20% diarrhea, 8% hypothyroidism, 9% vitiligo.
 - 13% grade 3-4 drug related adverse events
 - Auto-immune adverse events: 4% pneumonitis

Pembrolizumab Melanoma

Hamid NEJM 2013

Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial Lancet July 2014


Caroline Robert, Antoni Ribas, Jedd D Wolchok, F Stephen Hodi, Omid Hamid, Richard Kefford, Jeffrey S Weber, Anthony M Joshua, Wen-Jen Hwu, Tara C Gangadhar, Amita Patnaik, Roxana Dronca, Hassane Zarour, Richard W Joseph, Peter Boasberg, Bartosz Chmielowski, Christine Mateus, Michael A Postow, Kevin Gergich, Jeroen Elassaiss-Schaap, Xiaoyun Nicole Li, Robert Iannone, Scot W Ebbinghaus, S Peter Kang, Adil Daud

- Randomized Expansion cohort of original Phase I, additional 173 patients
- Dedicated to Ipilimumab "refractory" patients (received at least 2 doses Ipi). Excluded prior Ipi grade 3,4 toxicities. Allowed prior grade 2 toxicity, if resolved to grade 0-1, and off steroids. Stable brain mets allowed.
- 2mg/kg IV Q3 weeks vrs 10mg/kg IV Q3 weeks
- Results: ORR 26% in both doses, similar safety profiles, no drug related deaths, fatigue (33%), pruritus (26%), rash (18%). Only grade 3 drug AE was fatigue (3%).

Pembrolizumab Survival

Robert Lancet 2014

Pembrolizumab FDA Approved September 2014

- Pembrolizumab is a human programmed death receptor-1 (PD-1)-blocking antibody indicated for the treatment of patients with unresectable or metastatic melanoma and disease progression following ipilimumab and, if BRAF V600 mutation positive, a BRAF inhibitor.
- This indication is approved under accelerated approval based on tumor response rate and durability of response. An improvement in survival or disease-related symptoms has not yet been established. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials
- 2mg/kg IV over 30 minutes, Q3 weeks "until disease progression or unacceptable toxicity"
- Warnings & Precautions: Immune mediated adverse reactions: pneumonitis, colitis, hepatitis, hypophysitis, nephritis, hypo- or hyper-thyroiditis.
 - Withhold for grade 2, Rx prednisone >40mg/day, taper over 1 month
 - Resume pembrolizumab if recovers to grade 0-1.
 - Permanently discontinue for grade 3 or 4, or inability to reduce prednisone < 10mg/day within 12 weeks.

Ipilimumab + Nivolumab Melanoma Wolchok NEJM 2013

- Metastatic Melanoma, n = 88
 - Concurrent cohort: n = 53, ORR 40%,
 - Clinical Benefit SD+PR+CR = 65%
 - Grade 3-4 drug related AEs 53% (lipase, transaminitis, colitis)

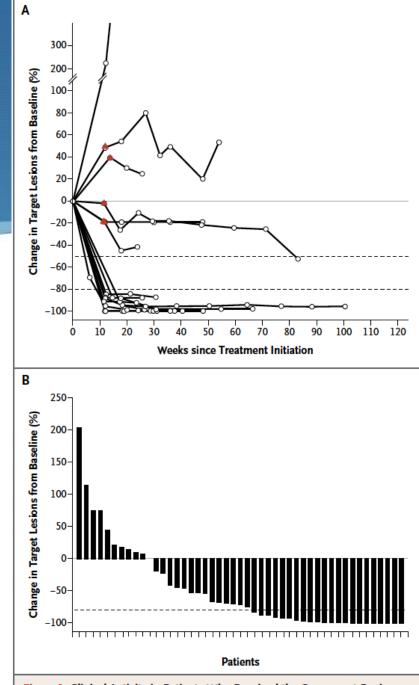
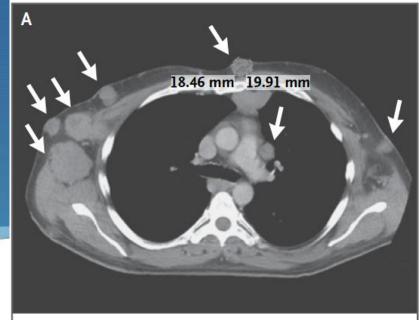



Figure 1. Clinical Activity in Patients Who Received the Concurrent Regimen of Nivolumab and Ipilimumab.

Ipilimumab Nivolumab Melanoma Wolchok NEJM 2013

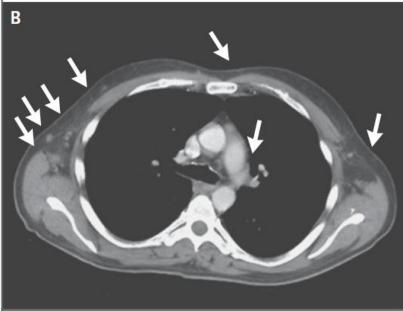


Figure 2. Computed Tomographic (CT) Scans of the Chest Showing Tumor Regression in a Patient Who Received the Concurrent Regimen of Nivolumab and Ipilimumab.

12/11/2014

Nivolumab 1rst Line NSCLung Gettinger ASCO 2014

- 1rst line lung monotherapy Nivolumab, n = 20
 - ORR 30% (50% PDL1+), Clinical Benefit SD+PR+CR = 65%
 - Grade 3-4 drug related AEs = 20%

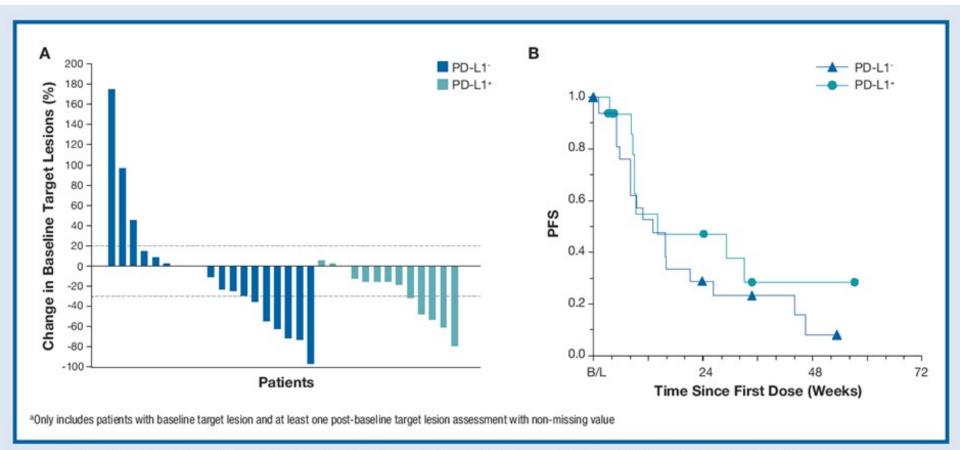


Figure 7. Response by PD-L1 status in NSCLC patients treated with nivolumab plus ipilimumab: A) best percent change in target lesion tumor burden from baseline^a and B) PFS

Ipilimumab + Nivolumab 1rst Line Lung SJ Antonio, ASCO 2014

- Phase IB, Front line lung cancer, n = 49
 - ORR 19% (PDL1+), 14% (PDL1-)
 - PFS 24 weeks 47% (PDL1+), 29% (PDL1-)
 - Drug related grade 3-4% AEs = 49%

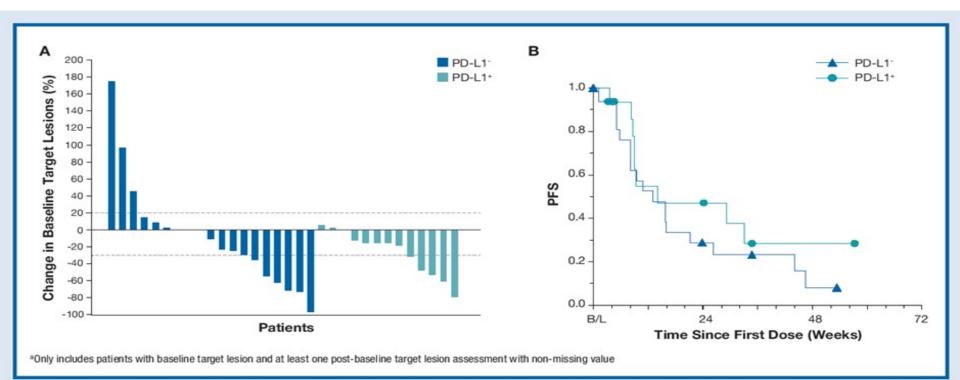
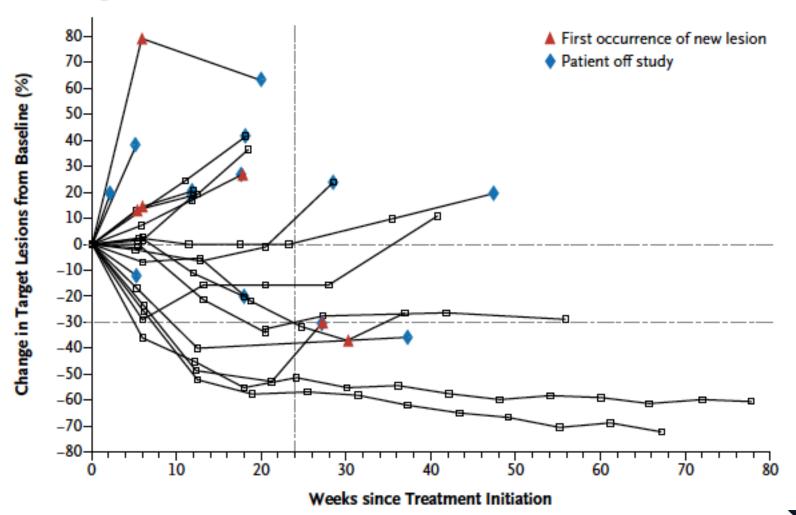


Figure 7. Response by PD-L1 status in NSCLC patients treated with nivolumab plus ipilimumab: A) best percent change in target lesion tumor burden from baseline^a and B) PFS

PDL1 Blockade

12/11/2014

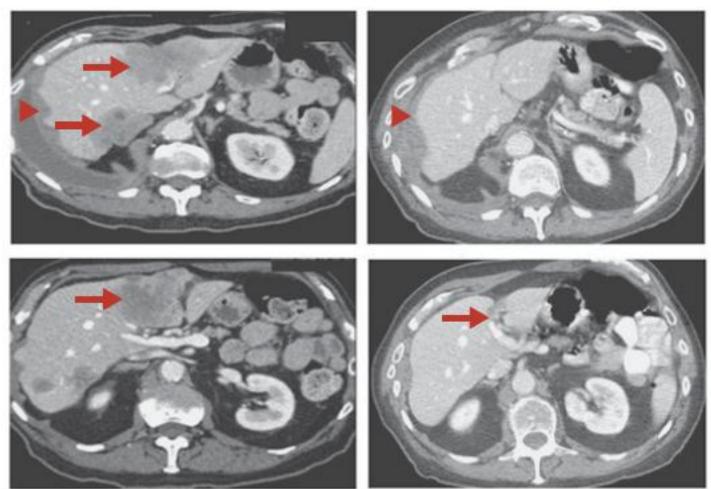
Safety and Activity of Anti-PDL1(MDX-1105) Antibody in Patients with Advanced Cancer Brahmer, Tykodi, Topalian, Hwu, Wigginton et al; NEJM epub June 2012 and ASCO 2012


- Phase Ia, 207 patients solid tumors Stage IV
 - Rx monotherapy mAb Q2 weeks (3 doses over 6 week cycles) upto 16 cycles until PD or CR
 - Cumulative objective response:
 - Melanoma 17%
 - Renal Cell 12%
 - NSCL 10% (75 patients with NSCL)
 - 50% of responders durable > 1 year
 - Immune related events 39% (rash, hypothyroidism, hepatitis, myasthenia gravis)
 - Drug related grade 3-4 AEs 9%
 - NSCL 12% stable disease; Clinical benefit (CR+PR+SD) = 22%

Safety and Activity of Anti-PDL1 Antibody in Patients with Advanced Cancer Brahmer, Tykodi, Topalian,

Hwu, Wigginton et al; NEJM epub June 2012 and ASCO 2012

B Non–Small-Cell Lung Cancer



Safety and Activity of Anti-PDL1 Antibody in Patients with Advanced Cancer Brahmer, Tykodi, Topalian, Hwu, Wigginton et al; NEJM epub June 2012 and ASCO 2012

B Non-Small-Cell Lung Cancer

Before Treatment

15 Months

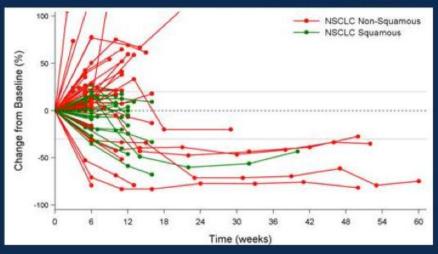
PDL1 Phase I Response Rates

PDL1 Drug (Author, year)	Tumor	Patient #	ORR	Grade 3-4 Drug AEs	Comments
MPDL3280A (Herbst, Tabernero 2013)	Solid tumors	140	21%	2%	PDL1+, ORR 39%
MPDL3280A (Powles 2014)	Bladder	31	50%	4%	
MPDL3280A (Rizvi 2014)	NSCLun g	53	23%	11%	PDL1 IHC 3+, ORR 83% (smokers respond better, Soria ECC 2013)
MEDI4736 (Segal 2014)	Solid tumor	346	11%	7%	PDL1+, ORR 22%
MEDI4736 (Brahmer 2014)	NSCLun g	13	16%	4%	PDL1+, ORR 39%
MSB0010718C (Heery 2014)	Solid tumor	28		14% ⁴⁹	

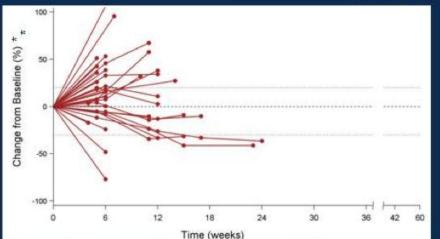
MEDI4736 PDL1 mAb Segal ASCO 2014

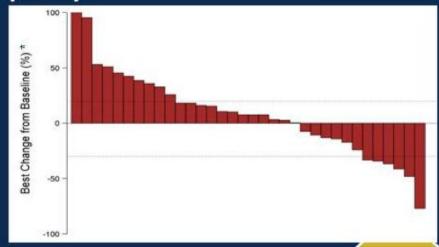
Response in Patient with Head and Neck Cancer

Baseline

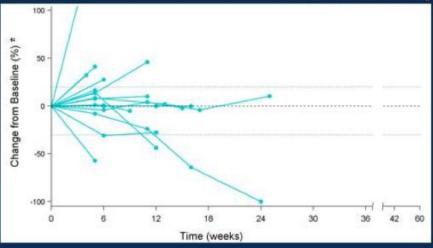


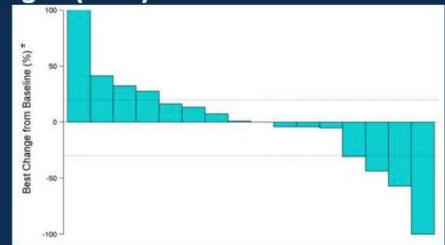
- 96 y.o. female
 - Progressed on previous cetuximab
 - HPV negative, PD-L1 positive
 - Treatment ongoing at 8 weeks


MEDI4736 PDL1 mAb Segal ASCO 2014 Emerging Clinical Activity in Multiple Tumors


NSCLC(n = 84)

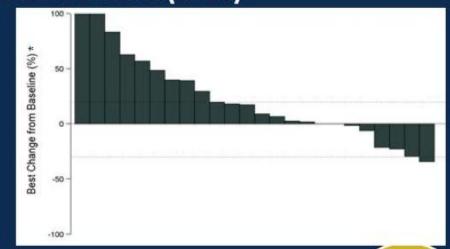
SCCHN(n=34)

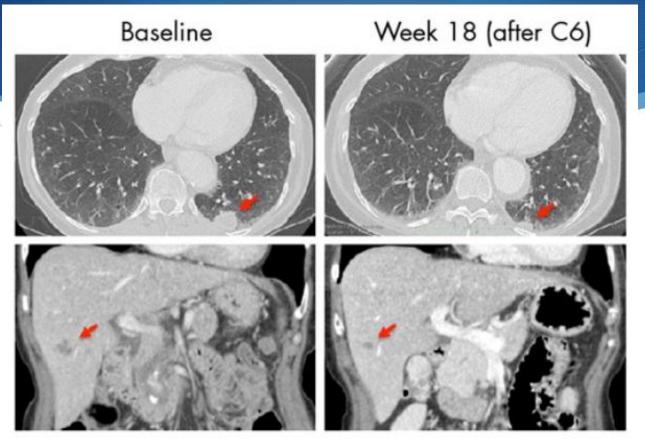




MEDI4736 PDL1 mAb Segal ASCO 2014

Emerging Clinical Activity in Multiple Tumors


Gastroesophageal (n=16)



Pancreatic adenocarcinoma (n=24)

MPDL3280A PDL1 mAb

Tabenero ASCO 2013

Carolina BioOncology Institute (Powderly).

A

 73-year-old female with CRC s/p partial colectomy, FOLFOX/bevacizumab, capecitabine, PD-L1 positive

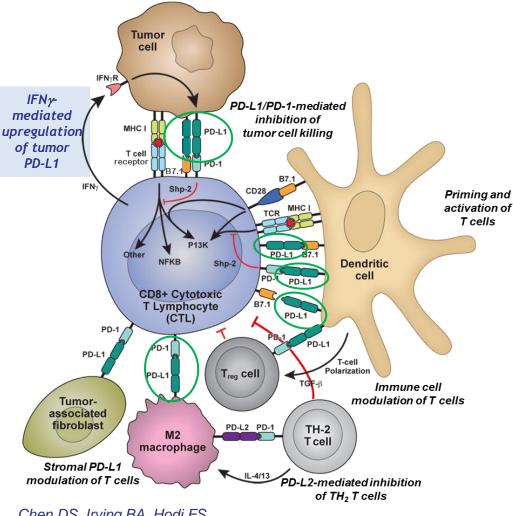
BioMarkers

12/11/2014

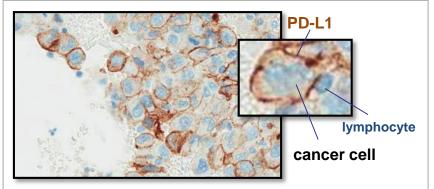
A

PDL1 Tumor Expression

- Distinct mechanisms of PDL1 expression:
 - Interferon gamma induced dynamic upregulation in the inflammatory tumor microenvironment ("adaptive resistance")
 - Oncogenic driver mutations that constitutively express PDL1
 - Epithelial to Mesenchymal transformation of the carcinoma phenotype

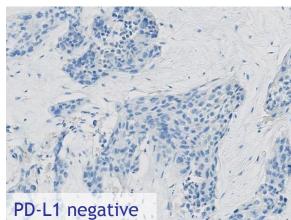

Biomarkers and Associations With the Clinical Activity of PD-L1 Blockade in a MPDL3280A Study

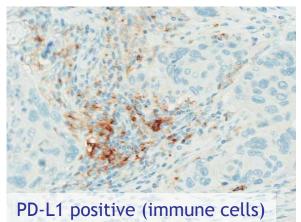
Powderly J¹, Koeppen H², Hodi FS³, Sosman J⁴, Gettinger S⁵, Desai R², Tabernero J⁶, Soria JC⁷, Hamid O⁸, Fine G², Xiao Y², Mokatrin A², Wu J², Anderson M², Irving B², Chen DS², Kowanetz M²

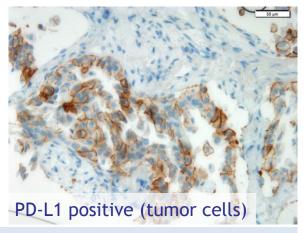


PD-L1 plays an important role in dampening the anti-tumor immune response

Chen DS, Irving BA, Hodi FS. Clin Cancer Res. 2012;18:6580.

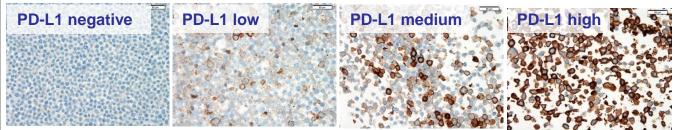


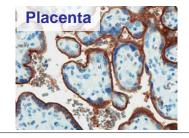

Presence of intratumoral T cells may lead to adaptive immune resistance


PD-L1 expression in the tumor microenvironment can inhibit anti-tumor T-cell activity:

- 1. PD-L1 expression by tumor infiltrating *immune cells*
- 2. PD-L1 expression by cancer cells

Proprietary Dx PD-L1 IHC Reagent – Assay to Measure PD-L1 in Human Tissues

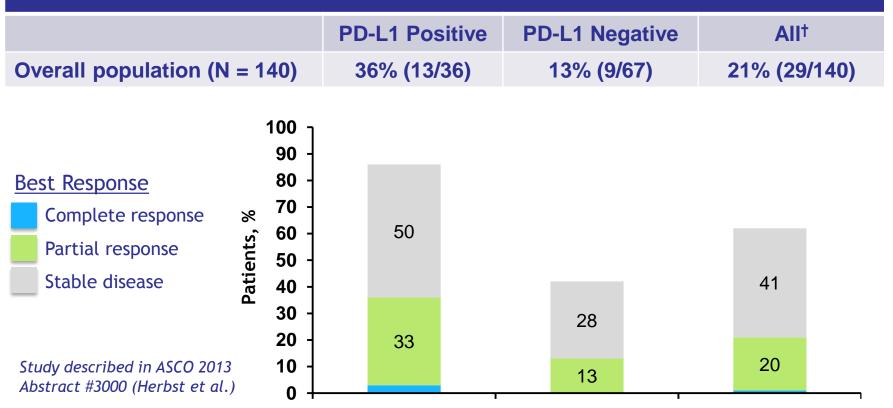



PD-L1 IHC:

- Monoclonal Ab against human PD-L1
- High sensitivity and specificity
- No background
- Recognizes PD-L1 in tumor cells and tumor infiltrating immune cells

PD-L1 expression in control cell lines

Positive tissue control


Annual '13

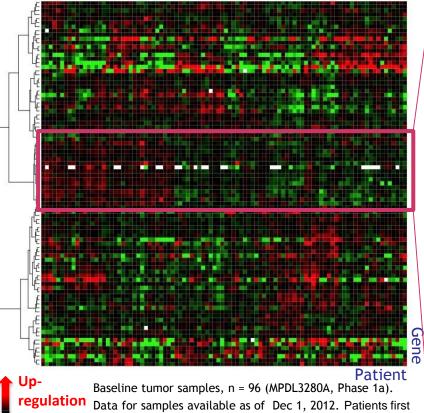
Meeting

PD-L1 Expression by IHC is Associated With Anti-tumor Response to MPDL3280A

Investigator-Assessed Overall Response Rate (ORR*); % (n/n)

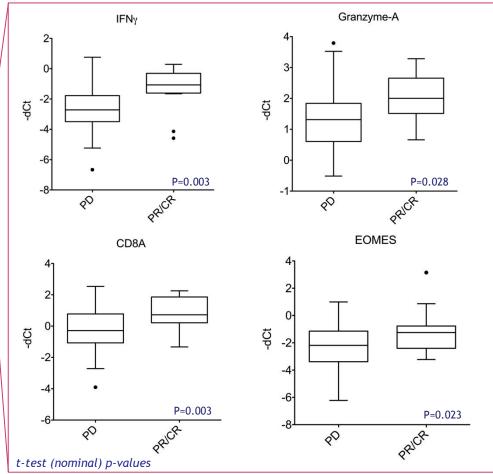
- *PD-L1 positive* defined as tumors with infiltrating immune cells that stain for PD-L1 Dx IHC
- Further assessment of PD-L1 Dx ongoing

⁺ All patients include PD-L1–positive, PD-L1–negative and patients with unknown tumor PD-L1 status. Patients first dosed at 1-20 mg/kg prior to Aug 1, 2012; data cutoff Feb 1, 2013. PRESENTED AT:



59

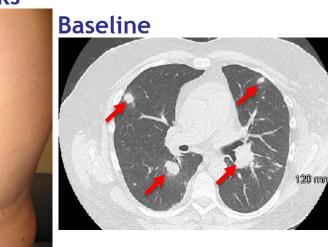
^{*} ORR includes investigator-assessed unconfirmed and confirmed PR/CR by RECIST 1.1


Anti-tumor Response to MPDL3280A is Associated With Th1-type T-cell Markers

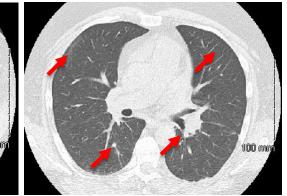
Hierarchical clustering of Ph1 samples

Downregulation

Baseline tumor samples, n = 96 (MPDL3280A, Phase 1a). Data for samples available as of Dec 1, 2012. Patients first dosed at 1-20 mg/kg prior to Aug 1, 2012; data cutoff Feb 1, 2013. Includes investigator-assessed unconfirmed and confirmed PR/CR by RECIST 1.1


Higher expression of cytotoxic Th1 T-cell markers in tumor tissue is associated with MPDL3280A activity

Serial Biopsy in a PD-L1–Positive RCC Patient With a Rapid Response to MPDL3280A

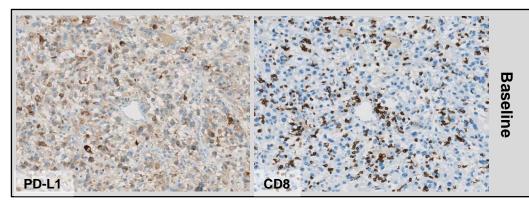

1 week tumor Flare

After 4 weeks

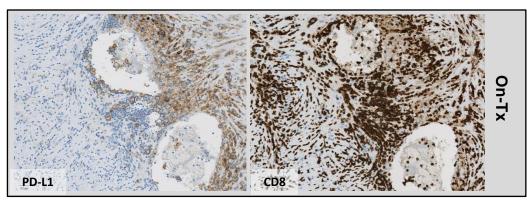
After 6 weeks

Surgical resection of responding mass, 0.75 x 0.75 cm at time of resection

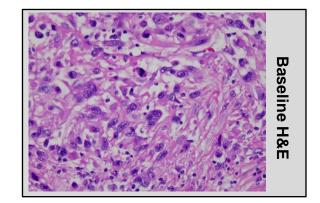
51-year-old male with Sarcomatoid RCC s/p L nephrectomy, sunitinib, XRT T9, temsirolimus, PD-L1 positive

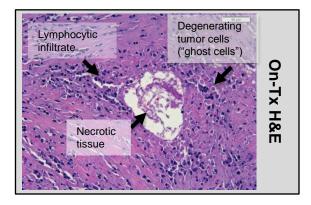

Carolina BioOncology Institute (Powderly).

PRESENTED AT:



MPDL3280A Phase la


Serial Biopsy in a PD-L1–Positive RCC Patient With a Rapid Response to MPDL3280A

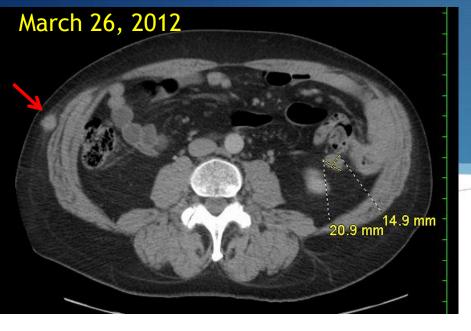


Biomarkers at baseline: PD-L1 positive CD8+ T cells present

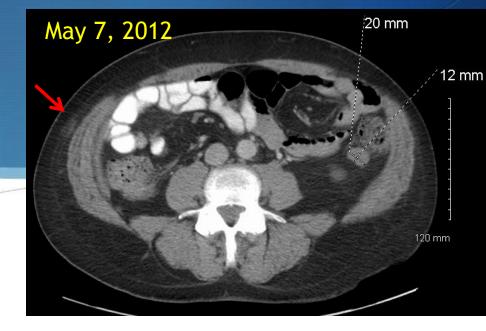
Biomarkers at week 4 post C1D1: PD-L1 positive Increased CD8+ T-cell infiltrate

On-treatment H&E: dense lymphocytic infiltrate and *no viable* tumor cells seen

PRESENTED AT:

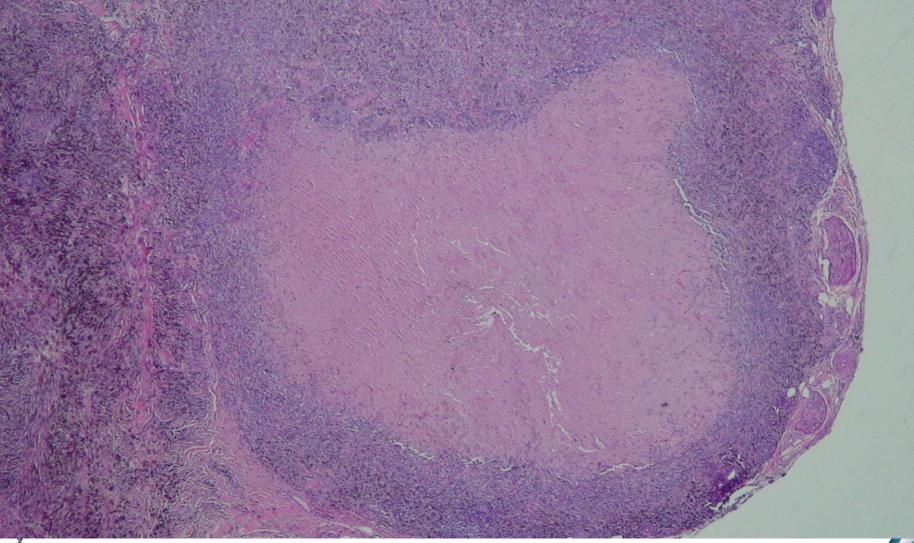

ASC

Annual '13 Meeting


Carolina BioOncology Institute (Powderly).

MPDL3280A Phase la

Melanoma Anti-PDL1 mAb


Melanoma

Z

Path Excised R flank Regressing Melanoma April 30, 2012

Path Excised R flank Regressing Melanoma April 30, 2012

B7-H1 (PDL1) Profiling of Circulating Tumor Cells

DAPVCK-FLU	CK-#LU	DAR	CO45-APC	() 87 HI	() OAPVCK ALL	CK-FLU	DAFI	C045-APC	OB7-HL	
		٠		÷.	•	۲	\$			
	۵	•				۲			1	
-	٩,	•		-	_	0				
	•	•	U	-	_		٦		1	
		٠				۲	۰		2	
		٠				•	•	の時間		
	٩		U		S	8	.*			
		•	0	MAN		0				
	2	44				٥				
Å										

Immune Principles

- More mutations = more tumor antigens to be recognized by T cells
- Highly mutated tumors (melanoma & lung) may respond to immunotherapy via self tolerance blockade
 - Explains why smokers may respond better than nonsmokers
 - Explains early evidence that "hyper-mutators" respond (BRCA mutants, Lynch syndrome, micro-satellite instability tumors)
 - Explains why tumors associated with carcinogens (lung, bladder, pancreatic) may respond
- Virally induced tumors (HPV cervical cancer, HPV Head & Neck) respond because viral tumor antigens recognized by T cells

Questions:

- PDL1 may be expressed on tumors by which distinct mechanisms:
 - A. Interferon gamma induced dynamic upregulation in the inflammatory tumor microenvironment.
 - B. Oncogenic driver mutations that constitutively express PDL1
 - C. Epithelial to Mesenchymal transformation of the carcinoma phenotype
 - D. all of the above.
- Answer is D (remarkable that so many biological circuits can cause PDL1 expression. Major take home point (the target is on any/all tumors potentially, not just melanoma).

Questions:

- PD1/PDL1 axis inhibitors are self tolerance blockade of which "compartment & phase" of the immune system:
 - A: Central immune self tolerance blockade in the lymph node during the priming phase.
 - B: Peripheral immune self tolerance blockade at the site of tumor inflammation during the effector phase.
 - C: Myeloid growth phase in the bone marrow compartment
 - D: all of the above
- Answer: B

