

Immune Checkpoint Blockade in Hodgkin and non-Hodgkin lymphoma

Michael A. Spinner, MD Instructor of Medicine (Oncology) Stanford University

February 2, 2022

#LearnACI

Disclosures

• No relevant financial disclosures

Objectives

- Review the biological basis for PD-1 blockade in classic Hodgkin lymphoma (cHL) and discuss biomarkers of response
- Discuss the role of PD-1 inhibitors in relapsed/refractory cHL and trials evaluating PD-1 inhibitors in the frontline setting
- Review trials of PD-1 inhibitors in B-cell and T-cell non-Hodgkin lymphoma (NHL)
- Highlight the CD47/SIRPa checkpoint and macrophage checkpoint inhibitors
- Discuss emerging checkpoint inhibitor combinations in cHL and NHL

➤ Targeting PD-1 in combination with CTLA-4, LAG-3, or CD47

Biological basis for PD-1 blockade in classic Hodgkin lymphoma

- Hodgkin Reed-Sternberg cells have recurrent genetic alterations of chromosome 9p24.1, leading to overexpression of PD-L1, PD-L2, and JAK2
- Greater magnitude of 9p24.1 copy gain and higher PD-L1 expression are associated with inferior PFS

Hodgkin Reed-Sternberg cells evade the immune system through multiple mechanisms

Spinner MA, Mou E, Advani RH. Chapter 96. Hodgkin Lymphoma. Williams Hematology. 2021

Classic Hodgkin lymphoma has a high tumor mutational burden

PD-1 inhibitors are highly active in relapsed/refractory cHL

Trial	Phase	PD-1 inhibitor	Ν	Median prior Tx	ORR	CR rate	Median PFS	Reference
CheckMate 205	2	Nivolumab	243	4	69%	16%	14.7 mo.	Armand et al, J Clin Oncol 2018
KEYNOTE-087	2	Pembrolizumab	210	4	72%	27%	13.7 mo.	Chen et al, Blood 2019
KEYNOTE-204	3	Pembrolizumab	151	2	67%	25%	13.2 mo.	Kuruvilla et al, Lancet Oncol 2021

Deeper responses are associated with more durable remissions

CheckMate 205 (Nivolumab)

KEYNOTE-087 (Pembrolizumab)

Chen et al, Blood 2019

Armand et al, JCO 2018

9p24.1 amplification and higher PD-L1 expression correlate with better responses to nivolumab

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

Younes et al, Lancet Oncol 2016

MHC class II expression correlates with better response to nivolumab

MHC class II expression in HRS cells

Roemer et al, J Clin Oncol 2018

© 2021–2022 Society for Immunotherapy of Cancer

#LearnACI

Novel salvage regimens combining PD-1 inhibitors with BV or chemotherapy have high CR rates and excellent PFS

Regimen	Ν	CR rate	PFS (All patients)	PFS (ASCT cohort)	Reference
Nivolumab + BV	91	67%	77% (3y)	91% (3y)	Advani et al, <i>Blood</i> 2021
Nivolumab + Ipilimumab + BV	22	84%	80% (1y)	NR	Diefenbach et al, Lancet Haematol 2020
Nivolumab + ICE	37	86%	79% (1y)	NR	Herrera et al, ASH 2019
Pembrolizumab + ICE	42	87%	88% (2y)	NR	Bryan et al, ASH 2021
Pembrolizumab + GVD	38	95%	100% (1y)	100% (1y)	Moskowitz et al, J Clin Oncol 2021

PD-1 inhibitor-based salvage regimens lead to excellent PFS post-ASCT

N = 853 patients at 12 U.S. centers

ASCT between 2010-2020

Outcomes compared by salvage regimen:

- Platinum-based regimen (N=451)
- Gemcitabine-based regimen (N=90)
- BV alone (N=87)
- BV + bendamustine (N=76)
- BV + nivolumab (N=48)
- PD-1 inhibitor (N=24)
- Miscellaneous (N=64)

Higher CR rate with BV+nivo (67%) vs platinum regimens (49%) (p<0.001)

Desai S, Spinner MA, David KA, et al, 2021 ASH Abstract #878

© 2021–2022 Society for Immunotherapy of Cancer

#LearnAC

Integrating PD-1 inhibitors into frontline therapy for cHL

Nivo-AVD x 4 + 30 Gy ISRT (early unfavorable)

Pembro-AVD x 4-6 (early unfavorable & advanced)

Regimen	Stage	Ν	CRR	PFS	Med f/u	Reference
Nivolumab x 4 \rightarrow Nivo-AVD x 6	IIB-IV	51	75%	83% (2y)	24 mo.	Ansell et al, ICML 2019
Nivo-AVD x 4 (sequential) + 30 Gy ISRT	I-II unfavorable	54	94%	98% (1y)	13 mo.	Brockelmann et al, JAMA Oncol 2020
Nivo-AVD x 4 (concurrent) + 30 Gy ISRT	I-II unfavorable	55	90%	100% (1y)	14 mo.	Brockelmann et al, JAMA Oncol 2020
Pembro-AVD x 4-6 (sequential)	IIA-IV	30	100%	100% (2y)	33 mo.	Allen et al, ASH 2021
Pembro-AVD x 4-6 (concurrent)	I-IV	30	68%	96% (1y)	10 mo.	Lynch et al, ASH 2021

PET responses to pembrolizumab in newly diagnosed cHL

s/p pembrolizumab x 3

s/p pembrolizumab x 3

Deauville score 4

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

Allen et al, Blood 2021

PD-1 blockade in primary mediastinal B-cell lymphoma (PMBL)

- PMBL frequently harbors 9p24.1 copy gain or amplification
- Pembrolizumab is active in multiply R/R PMBL (ORR 48%, CR rate 33%, median PFS 10.4 months)

FDA approved in 2018 for R/R PMBL after 2 or more therapies

• Higher PD-L1 expression correlates with improved response and PFS

PD-1 blockade in other B-cell non-Hodgkin lymphomas

- 9p24.1 copy gain and amplification are uncommon in most other B-cell NHL subtypes
- PD-1 inhibitors have minimal activity in R/R follicular lymphoma and DLBCL, NOS
- Response rates are higher in EBV+ DLBCL, Richter syndrome, and inflamed lymphomas (TCRLBCL)

NHL subtype	PD-1 inhibitor	Ν	ORR	CR	Median PFS	Reference
Follicular lymphoma	Nivo	92	4%	1%	2.2 mo.	Armand et al, Blood 2021
DLBCL, NOS	Nivo	87	10%	3%	1.9 mo.	Ansell et al, JCO 2019
Richter syndrome	Pembro	9	44%	11%	5.4 mo.	Ding et al, <i>Blood</i> 2017

Ansell et al, JCO 2019

PD-1 inhibitors have mixed results in T-cell lymphomas

- Modest responses in PTCL, but hyperprogression also reported
- Some durable responses observed in advanced CTCL
- Highly active in extranodal NK/T-cell lymphoma, nasal type
 - High PD-L1 expression correlates with treatment response

T-cell lymphoma subtype	PD-(L)1 inhibitor	Ν	ORR	CR rate	Median PFS	Reference
PTCL, NOS / TFH / AITL	Pembrolizumab	13	33%	27%	3.2 months	Barta et al, CLML 2019
Advanced MF / SS	Pembrolizumab	24	38%	8%	Not reached	Khodadoust et al, JCO 2019
ENKTL, nasal type	Pembrolizumab	7	100%	71%	Not reached	Kwong et al <i>, Blood</i> 2017
ENKTL, nasal type	Avelumab	21	38%	24%	2.7 months	Kim et al, <i>Blood</i> 2020

Activating macrophages through CD47/SIRPa checkpoint blockade

- CD47 is a "don't eat me" signal expressed by many cancers to evade phagocytosis by macrophages¹
- Magrolimab (Hu5F9-G4) is an anti-CD47 antibody which promotes phagocytic elimination of multiple lymphoma subtypes in preclinical models^{2,3}

Control mAb: No Phagocytosis

Macrophages Cancer cells

Anti-CD47 mAb: Phagocytosis

Macrophages Cancer cells

¹Veillette and Tang, JCO 2019

²Chao et al, *Cell* 2010

³Liu et al, *PLoS One* 2015

Magrolimab + rituximab in relapsed/refractory B-cell NHL

- Magrolimab + rituximab combination was active and synergistic in heavily pretreated follicular lymphoma (ORR 71%, CR 43%) and DLBCL (ORR 40%, CR 33%)
- Magrolimab led to transient anemia, mitigated by using a priming/maintenance dose schedule

Novel immunotherapy combinations in lymphoma

- Numerous checkpoints modulate T-cell function in lymphoma ٠
- Combining PD-1 inhibitors with other checkpoint inhibitors may enhance antitumor immune responses:
 - Enhancing T-cell immune responses (CTLA-4, LAG-3 ٠ antibodies)
 - Activating NK cells (CD30/CD16 bispecific antibody) •

CTLA4 😂 CD80/86 PD1 **PDL1/2** CD28 CD80/86 APC/DC/ T cell TCR MHC Tumor cell LAG-3 CD137/ CD137L/ 4-1BBL 4-1BB CD40L **CD40** CD70/ CD27 CD27L

 Activating macrop 	hages (CD47/SIRPa blockade	*cHL cohort			Ansell SM, JCO 2021	
Immunotherapy combination	Therapeutic targets	Disease group	N*	ORR*	CR*	Reference / NCT number
Nivolumab + ipilimumab	PD-1 + CTLA-4	cHL, DLBCL, FL	31	74%	23%	Armand et al, Leukemia 2021
Nivolumab + lirilumab	PD-1 + KIR	cHL, DLBCL, FL	21	76%	24%	Armand et al, Leukemia 2021
Pembrolizumab + AFM-13	PD-1 + CD30/CD16 bispecific	cHL	24	88%	46%	Bartlett et al, Blood 2020
Pembrolizumab + magrolimab	PD-1 + CD47	cHL	Tr	ial ongoi	ng	NCT04788043
Pembrolizumab + MK-4280	PD-1 + LAG-3	cHL, DLBCL, FL	Tr	ial ongoi	ng	NCT03598608

Conclusions

- PD-1 inhibitors are highly active in cHL, PMBL, and some subtypes of T-cell lymphoma (extranodal NK/T-cell lymphoma, nasal type)
- 9p24.1 amplification, higher PD-L1 expression, EBV+ disease, and intact MHC class II expression are associated with better responses to PD-1 inhibitors
- PD-1 inhibitors are moving into earlier lines of therapy in cHL, including as first salvage and in the frontline setting in combination with chemotherapy with encouraging results
- PD-1 inhibitors can produce durable remissions but are not curative as single agents
- Future studies will focus on rational immunotherapy combinations to enhance T-cell responses and activate other immune effectors including NK cells and macrophages

Thank you!

• Questions?

