Cancer Vaccines

Patrick Ott

Melanoma Disease Center Center for Immuno-Oncology Dana Farber Cancer Institute Harvard Medical School

The following relationships exist related to this presentation:

No relationships to disclose

Low anti-tumor activity of previous vaccine trials

35 reports of vaccine trials that included 765 patients considered representative of the majority of published trials

- RR: 3.8%
 - 7/175 (4.0%) patients treated with peptide vaccines
 - 6/142 (4.2%) patients treated with whole tumor cell vaccines
 - 14/198 (7.1%) patients treated with dendritic cell vaccines

Rosenberg, Yang, Restifo, Nat Med. 2004

Cancer Vaccines: Why have they not worked (for the most part)

- Paucity of truly foreign antigens
- Immunosuppressive tumor microenvironment
- Lack of "inflammatory cues"
- Relatively poor understanding of how to induce strong and sustained T-cell–mediated immune responses against tumors in humans

Cancer Vaccines: Renewed Interest

Recent rapid advancements in the field:

- Strategies to overcome regulatory/suppressive mechanisms:
 - PD-1/PD-L1 inhibition
 - IDO suppression
 - T reg suppression
- Effective targeted therapies for combination with immunotherapy
 - BRAF/MEK inhibition for melanoma
 - ALK inhibition for NSCLC
- Powerful genomic sequencing capabilites neoantigens

Important features of an effective cancer vaccine

Ott et al. Hematol Oncol Clin N Am 2014

Immunogen

- Choice of Antigen
 - Differentiation antigen (MART-1, gp100)
 - Cancer testis antigen (NY-ESO-1, MAGE)
 - Overexpressed in tumors (KIT, HER2)
 - Mutated antigen (Neoantigen)
- Choice of Format:
 - Protein (broader antigenic selection)
 - Peptide (more stable in vivo, lower cost, HLA restriction). Long versus short
 - Viral vector
 - DNA, RNA
 - Whole tumor cells
 - Dendritic cells pulsed with protein or peptide

Cancer Vaccine Trials

Obeid, Sem. Oncol, 2015

Cancer Vaccines in Late Stage Development / approved

Name	Tumor	Antigen	Antigen Delivery	Immune Response	Clinical Activity
Siplileucel-T	Prostate Ca	PSA	Cell based -	Yes	Yes – FDA
GVAX + CRS-207	Pancreatic Cancer	Mesothelin	Live attenuated listeria, prime - boost	Yes	Yes
IMA 901	Renal Cell Carcinoma	Tumor associated peptides (TUMAP)	Peptides with GM-CSF	Yes	Yes
Synthetic Long E6/7 Peptide vaccine HPV- 01	HPV-induced malignancies (e.g vulvar neoplasia)	HPV E6 and E7	Mixture of 13 long peptides (25-35 AA)	Yes	Yes
Talimogene Laherparepvec (TVEC)	Melanoma	"Whole tumor" (in situ vaccination with onclytic virus)	Oncolytc virus (modified herpes virus encoding GM-CSF)	Yes	Yes - FDA approved
Rindopepimut	Glioblastoma	Mutated EGFRvIII	14-mer peptide, KLH	Yes	Yes
Fowlpox-PSA- TRICOM	Prostate Ca	PSA	Fowlpox expressing antigen + TRICOM (B7.1, ICAM-1, LFA-3)	Yes	Yes

Sipuleucel-T: Vaccination With Fresh (Functional) APCs: Generate ex vivo and Reinfuse

Drake, Nat Rev Immunol. 2010.

Phase III Trial of Sipuleucel-T Immunotherapy in mCRPC (IMPACT): OS

Kantoff PW, et al. N Engl J Med. 2010

Phase 2 GVAX pancreas and CRS-207 immunotherapy versus GVAX alone in pancreatic adenocarcinoma

- GVAX:
 - irradiated, GM-CSF-secreting allogeneic pancreatic cancer cell lines given intradermally
- CRS-207:
 - live-attenuated *Listeria monocytogenes* (Lm)
 which expresses mesothelin and stimulates innate and adaptive immunity.
- Low-dose cyclophosphamide (CY):
 - given prior to GVAX to inhibit regulatory T-cells.

Le, J Clin Oncol 2015

Phase 2 GVAX pancreas and CRS-207 immunotherapy versus GVAX alone in pancreatic adenocarcinoma

Le, J Clin Oncol 2015

Phase 2 GVAX pancreas and CRS-207 immunotherapy versus GVAX alone in pancreatic adenocarcinoma

Le, J Clin Oncol 2015

Multipeptide cancer vaccine IMA901

Immune response and to IMA901 and Treg depletion associated with improved Overall Survival

Walter et al. Nat Med, 2012

Adjuvants used in Cancer Vaccine Trials

Obeid, Sem. Oncol, 2015

Persistent antigen at vaccination site compromises anti-tumor CD8-T cell responses

Hailemichael, NEJM, 2013

Short peptides versus long peptides

Hailemichael, NEJM, 2013

Toll Like Receptor Agonists

These have molecular features that distinguish them from our own cells:

Our immune systems have evolved to recognize them:

Obeid, Sem. Oncol, 2015

Poly ICLC and CPG DNA are highly effective vaccine adjuvants

- Nucleic acid ligands of TLR/RLRs are effective adjuvants
 - CpG DNA is difficult to obtain for trials
 - dsRNA stimulates several key pathogen sensors
- Stabilization of pIC in a complex with carboxymethylcellulose, poly-lysine and pIC

Poly ICLC is safe in humans and effective for mounting immune responses

Sabbatini Clin Can Res 2012

Vaccination with SLP against HPV-16 Oncoproteins for Vulvar Intraepithelial Neoplasia

Kenter, NEJM, 2009

Immune checkpoint blockade plus vaccine?

Ipilimumab plus peptide vaccine gp100

Blockade of CTLA-4, PD-1, and PD-L1 Each Promotes Rejection of B16 melanoma and is additive when used in combination

Curran MA PNAS 2010

PD-1 blockade cooperates with cancer vaccine TEGVAX to elicit regression of established tumors

PD-L1 expression

GM-vaccine

TEGVAX

TEGVAX + anti-IFN-γ

Fu, Cancer Res, 2014

T-VEC: An HSV-1-Derived Oncolytic Immunotherapy Designed to Produce Local and Systemic Effects

Systemic Effect: Tumor-Specific Immune Response

Kaufman et al. ASCO 2014, J Clin Oncol 31, 2013 (suppl; abstr LBA9008)

T-VEC Responses in Injected And Uninjected Lesions

Cycle 1

Cycle 13

Kaufman et al. ASCO 2014, J Clin Oncol 31, 2013 (suppl; abstr LBA9008)

Primary Overall Survival

Kaufman et al. ASCO 2014, J Clin Oncol 31, 2013 (suppl; abstr LBA9008)

T-VEC to augment immune-checkpoint blockade?

Puzanov I, et al. ASCO 2014. J Clin Oncol 32:5s, 2014 (suppl; abstr 9029^)

T-Vec + Ipi in Unresected Stage IIIB-IV Melanoma: Max Change in Tumor Burden

*Only patients who received both T-Vec and ipilimumab. CR, CRu, and PD included.

[†]One patient with PD not shown in the plot because tumor burden could not be accurately calculated (missing post-baseline data)

[‡] Percentage change from baseline: 538

§ Percentage change from baseline: 265

Puzanov I, et al. ASCO 2014. J Clin Oncol 32:5s, 2014 (suppl; abstr 9029^)

Examples for Novel Approaches

- Neoantigens
- Scaffolds

DNA sequencing across cancers (n= >3000)

Lawrence MS Nature 2013

Somatic mutations have the potential to generate neoantigens

Classes of mutations generate potential tumor neoepitopes

Tumor-specific expression of antigen

A critical role of neoantigens in the immune control of tumors

- Neoantigens represent dominant targets in tumor-infiltrating lymphocyte (TIL) populations in patients benefiting from adoptive therapy
- Overall survival improved in patients predicted to have at least one immunogenic neoantigen epitope
- Widespread detection of spontaneously occurring neoantigen-specific T cells
- Checkpoint blockade therapy has revealed neoantigen-specific responses

Mutational load correlates with response to αPD1/αPDL1 and ipilimumab

Checkpoint blockade therapy induces neoantigen responses, which parallel tumor regression

Rizvi et al, Science 2015

Developing a personalized cancer vaccine based on multiple coding mutations unique to each pt tumor

Hacohen et al, Cancer Immunol Res 2013

A Phase I Study with a Personalized NeoAntigen Cancer Vaccine in High Risk Melanoma

IND Sponsor and PI: Patrick A. Ott

Checkpoint blockade targets tumor neoantigens in an MCA sarcoma mouse model

Gubin et al. Nature 2014

Dendritic cell vaccine increases the breath and diversity of melanoma neoantigen specific T cells

Carreno et al, Science, 2015

Dendritic cell vaccine increases the breath and diversity of melanoma neoantigen specific T cells

Carreno et al, Science, 2015

Strategies for engineering more effective cancer vaccines

Biodegradable Scaffolds - Hypothesis

- GM-CSF recruits and activates dendritic cells to stimulate T effectors
- CpG triggers TLR9 signaling → DC activation, production of type I interferons, cytokines, and chemokines.
- Necrotic tumor cell lysate provides the target antigens for vaccine response

Engineered polymer (PLGA) scaffolds

8 mm diameter

Wyss Institute for Biologically Inspired Engineering Necrotic B16 lysates + GM-CSF + CpG stimulate a broad dendritic cell response

Day 10

Ali Sci Transl Med 2009

Scaffold delivered GM-CSF/CpG/B16 lysates elicit Th1 promoting cytokines

Day 10

Ali Sci Transl Medicine 2009

Scaffold delivered GM-CSF/CpG/B16 lysates stimulate a high Teff/Treg ratio

Day 12 implantation sites

Ali Sci Transl Med 2009

A Phase I Trial of a Dendritic Cell Activating Scaffold Vaccine (WDVAX) Incorporating Autologous Melanoma Cell Lysate in Metastatic Melanoma Patients

