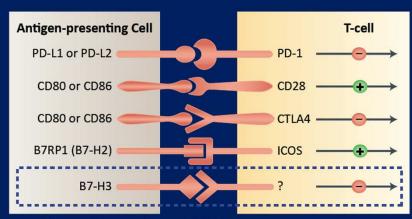
Interim Results of an Ongoing Phase 1, Dose Escalation Study of MGA271 (Enoblituzumab), an Fc-optimized Humanized Anti-B7-H3 Monoclonal Antibody, in Patients with Advanced Solid Cancer

Powderly J^a, Cote G^b, Flaherty K^b, Szmulewitz RZ^c, Ribas A^d, Weber J^e, Loo D^f,
Baughman J^f, Chen F^f, Moore P^f, Bonvini E^f, Vasselli J^f,
Wigginton J^f, Cohen RB^g, Burris H^h, Chmielowski B^d


^aCarolina BioOncology Institute, Huntersville, NC; ^bDepartment of Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA; ^cDepartment of Medicine, University of Chicago, Chicago, IL; ^dUCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA; ^eDonald A. Adam Comprehensive Melanoma Research Center and Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL; ^fMacroGenics, Inc., Rockville, MD; ^gUniversity of Pennsylvania/Abramson Cancer Center, Philadelphia, PA; ^hSarah Cannon Research Institute, Nashville, TN

Disclosures

- Clinical Trial Research Funding
 - Astra Zeneca/MedImmune
 - Bristol-Myers Squibb
 - Genentech/Roche
 - Imclone/Lilly
 - Incyte
 - MacroGenics
 - EMD Serono

- Speakers Bureau
 - -BMS
 - Merck
- Stock Ownership: BioCytics, Lion Biotechnology, Juno Therapeutics, BlueBird Bio, Kite Pharma, ZioPharm Oncology

B7-H3 (CD276): Member of B7 Family of Immune Regulators

Adapted from Pardoll, et al., Nature, April 2012.

Immunosuppressive Role

- Expression on lung cancer cells and macrophages suppresses T-cell mediated antitumor immune response (Chen 2013)
- B7-H3-positive myeloid-derived suppressor cells found in tumor microenvironment (*Zhang 2015*)
- •Crystal structure resolved: T-cell inhibitory domain mapped (Vigdorovich 2013)

Tumor Invasion and Metastatic Role

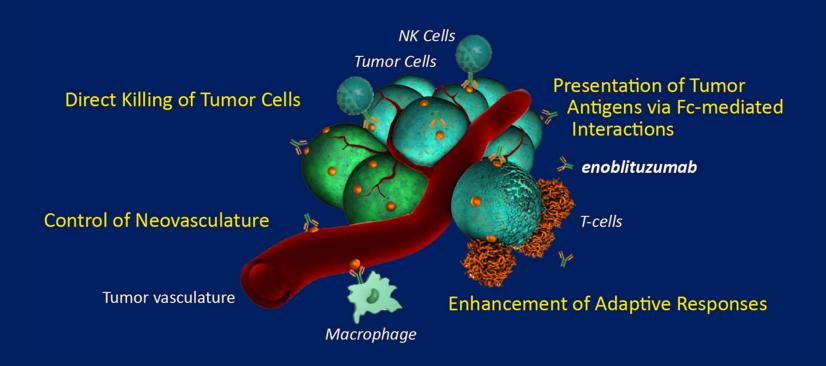
- Silencing reduces migration and invasion of melanoma and breast cancer cell lines (Chen 2008)
- Enhances metastatic potential of melanoma cells (Tekle 2012)

B7-H3: Tissue Expression and Prognosis

	IHC Summary of Samples Screened							
Fixed Tumor MicroArray	B7-H3 Positive		2+ or Above					
Lead Potential Indications:								
Head and Neck	19/19	100%	19/19	100%				
Kidney Cancer	77 / 78	99%	75 / 78	96%				
Lung Cancer	226/272	83%	211/272	78%				
Breast Cancer	119/164	73%	115/164	70%				
Prostate Cancer	88/99	89%	51/99	52%				
Melanoma	66/70	94%	32/70	46%				
Bladder	14/20	70%	9/20	45%				
Other Potential Indications:								
Glioblastoma	65/66	98%	63/66	95%				
Thyroid Cancer	34/35	97%	33/35	94%				
Mesothelioma	41/44	93%	39/44	89%				
Pancreas Cancer	69/78	88%	45/78	58%				
Ovarian Cancer	59/79	75%	36/79	46%				

B7-H3 Tissue Expression

- High level expression in a broad range of tumors
- Minimal expression on normal tissue
- Expressed on tumor neo-vasculature
- Correlation of high expression with advanced disease, presence of metastases and poor outcome


Timeline of selected B7-H3 articles in peer-reviewed publications

Enoblituzumab (MGA271, Anti-B7-H3 Antibody)

- Humanized IgG1 monoclonal antibody recognizing human
 B7-H3 with high affinity (KD ≈ 7 nM)
- Terminal Half Life ≈ 3 weeks
- Fc-optimized via mutation to enhance effector function (e.g., ADCC)
 - Increased affinity for activating Fcy receptor (FcyRII, CD16A)
 - Decreased affinity for the inhibitory Fcy receptor (FcyRIIB, CD32B)
- Once-weekly intravenous dosing
- Currently in clinical trials as monotherapy (described today) and in combination with checkpoint inhibitors including pembrolizumab and ipilimumab (see SITC Trials-In-Progress Poster Session)

Enoblituzumab Potential Mechanisms of Action

Study Design: Ongoing Phase 1 Dose Escalation and Cohort Expansion

Dose Escalation Completed (n=26) Griginal Expansion Cohorts Enrollment complete (n=15 per cohort) Melanoma Prostate Other Tumors

Original Study Design

- •Cycle 1: dosing weekly x 4, then off x 4 weeks
- •≥ Cycle 2: dosing weekly x3, then off 1 week
- •Standard RECIST for eval. & management
- •Premed 10 mg dexamethasone, dose #1 & #2

New Expansion Cohorts

Initiated 4Q14, Ongoing (n=16 per cohort)

Head & Neck – HPV +/
Triple-negative Breast

Renal Cell

Melanoma (all post-Anti CTLA-4 and or PD-1/L1)

NSCLC or Bladder

New Trial Design

- Continuous weekly dosing for all cycles
- Management according to IR principles
- Evaluation by RECIST and irRECIST
- Premed 50-100mg hydrocortisone,Dose #1 & #2

Study Objectives

Primary Objective

 Describe safety profile of enoblituzumab in patients with advanced cancer that expresses B7-H3 in tumor and/or tumor-associated vasculature

Secondary Objectives

- Determine Maximum Tolerated Dose or Maximum Administered Dose of enoblituzumab
- Evaluate preliminary anti-tumor activity of enoblituzumab
- Determine enoblituzumab pharmacokinetics/pharmacodynamics

Exploratory Objectives

- Evaluate and assess IHC diagnostic test for B7-H3 expression on tumor cells and tumor vasculature

Key Inclusion/Exclusion Criteria

Inclusion

- B7-H3 expression on tumor cells or tumor vasculature
 - ≥10% of tumor cells with 2 or 3+ IHC* staining or ≥ 25% of tumor vasculature having 2 or 3+ IHC staining
- Progressive disease during or following last treatment regimen
 - Up to 4 to 5 prior treatments allowed depending on tumor type
- Prior checkpoint inhibitor therapy allowed (mandated for melanoma)
- ECOG Performance Status ≤ 1
- Measurable disease by RECIST 1.1
 - Prostate cancer required measurable disease in new trial design
- Completed systemic anticancer therapy ≥ 28 days prior to enrollment

Exclusion

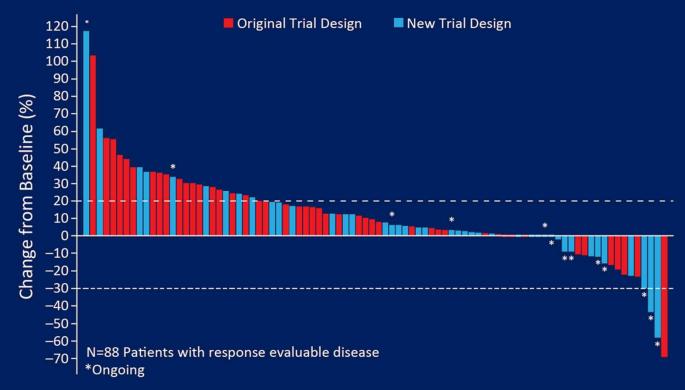
- ≥ Grade 3 autoimmune toxicity with prior immune checkpoint inhibitor
- Concurrent systemic steroids >10 mg/day of oral prednisone/equivalent
- Active brain metastases

Baseline Characteristics

Baseline Characteristics	Escalation n=26	Original Expansion n= 48	Additional Expansion n= 42	Total n= 116				
Median age, (range), years	62 (42-77)	64 (26-88)	67 (24-83)	63 (24-88)				
Male, no. (%)	17 (65)	33 (69)	28 (67)	78 (67)				
Prior Cancer Therapy								
Median no. (range): Chemo and Immunotherapy	2 (1-5)	3 (0-8)	3 (0-5)	3 (0-8)				
Prior Chemotherapy, no. (%)	21 (81)	34 (71)	37 (88)	92 (79)				
Prior Immunotherapy, no. (%)	6 (23)	18 (38)	7 (17)	31 (27)				
ECOG Performance Status, no. (%)								
0	16 (62)	20 (42)	10 (24)	46 (40)				
1	10 (38)	28 (58)	32 (76)	70 (60)				

Enoblituzumab-Related Adverse Events

- Acceptable safety profile
- No drug-related treatment discontinuation
- Mild-moderate infusion reactions readily managed with conventional supportive care including corticosteroids, decreased infusion rate

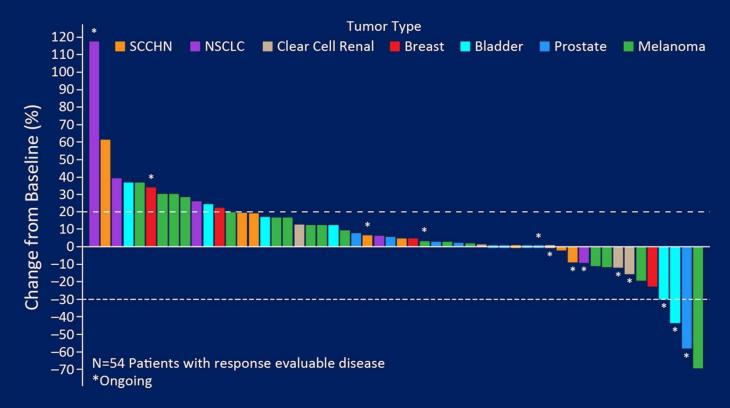

	No. (%) of Patients						
	All	Grades	Grades 3-4				
Drug-Related Adverse Event ≥10% of Patients	Total Population (N=116)	New Study Design* (N=55)	Total Population (N=116)	New Study Design* (N=55)			
Any adverse event	86 (74)	42 (76)	5 (4)	3(5)			
Infusion related reaction/ cytokine release syndrome	39(34)	24 (44)	1(1)	1(2)			
Fatigue	37 (32)	15 (27)	0	0			
Nausea	22 (19)	14 (25)	0	0			
Vomiting	15 (13)	10(18)	0	0			

^{*}New study design is continuous, uninterrupted weekly infusion of enoblituzumab with reduced steroid pre-med

11

Best Change in Target Lesion Size

All Response Evaluable Patients: Escalation and Expansion

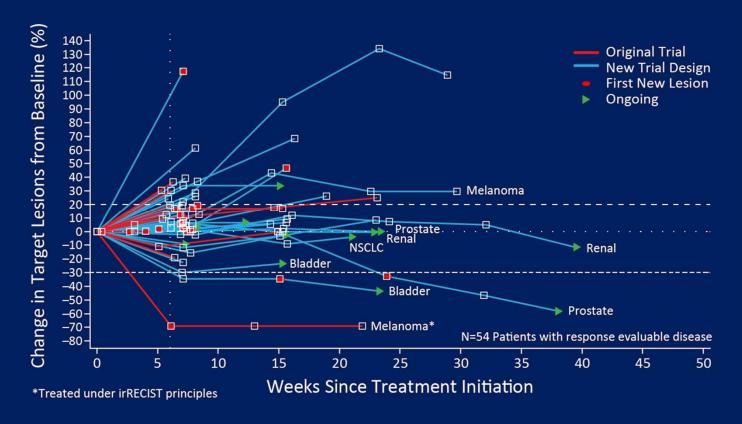


- Tumor regression at multiple dose levels (0.15mg/kg 15mg/kg)
- Enrollment continues under new trial design: ≈ half of planned patients enrolled

12

Best Change in Target Lesion Size

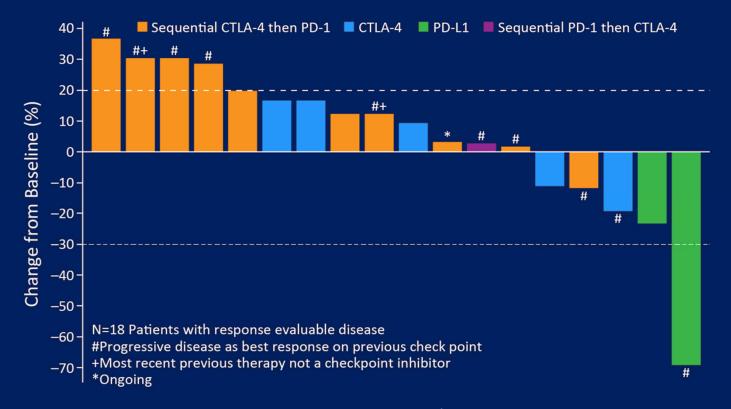
Response Evaluable, Tumor-Specific Expansion Cohorts: 15 mg/kg Cohorts: Melanoma, Prostate, TNBC, SCCHN, NSCLC, Bladder, RCC



• Tumor regression observed in each disease cohort

Data as of September 21, 2015

Change in Target Lesion Size Over Time


Response-Evaluable Tumor-Specific Expansion Cohorts: 15 mg/kg Cohorts: Melanoma, Prostate, TNBC, SCCHN, NSCLC, Bladder, RCC

14

Best Change in Target Lesion Size: Melanoma

All patients are post-checkpoint inhibitor

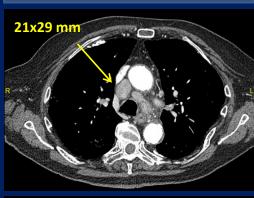
All but one patient treated 15mg/kg enoblituzumab

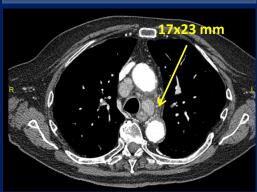
Metastatic Melanoma

73-year-old man previously progressed on Anti-PD-L1 And Trametinib

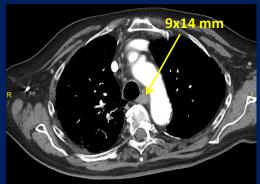
- Near complete regression of ulcerated 4 cm tumor in groin
- Regression of small pulmonary nodules on CT

Courtesy of Dr. Chmielowski at UCLA Jonsson Comprehensive Cancer Center


Metastatic Prostate Cancer


87-year-old man

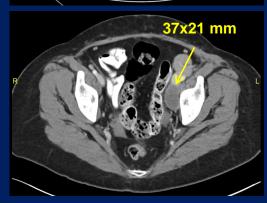
Pre-Treatment Baseline



Day 287 34 Doses enoblituzumab (15mg/kg)

Patient remains on therapy after 11 months of treatment

Courtesy of Dr. Chmielowski at UCLA Jonsson Comprehensive Cancer Center


Vitiligo in Melanoma Patient with Progression on Prior Therapy with Checkpoint Inhibitors

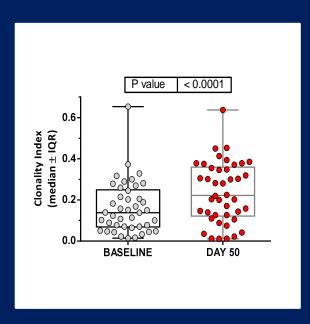
52-year-old woman previously progressed on anti-CTLA-4 and anti PD-1

Pre-Treatment Baseline Left Ext Iliac Lymph Node #1

47x26 mm

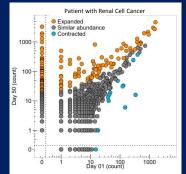
Day 58 8 Doses enoblituzumab (15mg/kg)

Development of Vitiligo (Post-enoblituzumab)

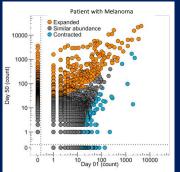


Courtesy of Dr. Chmielowski's patient at UCLA Jonsson Comprehensive Cancer Center

Increase in T-Cell Receptor Repertoire Clonality Following Enoblituzumab


Evaluation of T-Cell Clonality in the Peripheral Blood

Population Clonality


Baseline (Day 1) v D50 Post-treatment (42 patients)

Clonality: 2 Patients with Tumor Shrinkage

Top 25 Clones at Day 50 Comparison to Baseline

Conclusions from Ongoing Enoblituzumab CP-MGA271-01 Study

- Manageable and tolerable safety profile
 - No treatment related discontinuation
 - No severe immune mediated toxicity
- Preliminary anti-tumor activity in broad range of tumors
 - Post check-point inhibitor failure melanoma
 - New study design: management principles used in immune oncology
- Initial demonstration of T-cell modulation with enoblituzumab
- Interim results:
 - Support continued evaluation of enoblituzumab monotherapy
 - Support evaluation of enoblituzumab in combination with check-point inhibitors: anti PD-1 and anti CTLA-4

ACKNOWLEDGEMENTS

We thank all patients and their families

- To the clinical trial teams at the study centers
 - Carolina BioOncology Institute, Huntersville, NC
 - Massachusetts General Hospital, Boston MA
 - Dana Farber Cancer Institute, Boston, MA
 - University of Chicago, Chicago, IL
 - UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA; e
 - Moffitt Cancer Center, Tampa, FL
 - University of Pennsylvania/Abramson Cancer Center, Philadelphia, PA
 - Sarah Cannon Research Institute, Nashville, TN
 - Tufts Medical Center, Boston MA
 - Yale Cancer Center, New Haven CT
- MacroGenics, Inc., Rockville
 - Frances Faurot, Linda Peng, Donna LePera, Deepa Varghese, Hua Li, Young Wang, Lela Managadze, Nancy Sigman and Scott Koenig