

Advances in Cancer Immunotherapy™ – Recent AACR and Related Updates

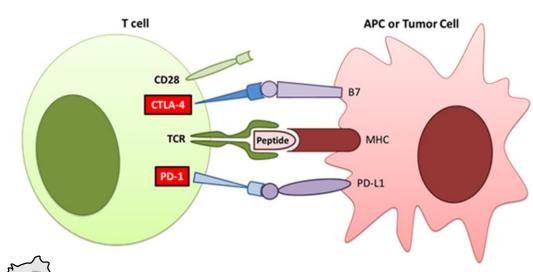
Robert J. Canter, MD
Professor, Surgical Oncology
UC Davis

Disclosures

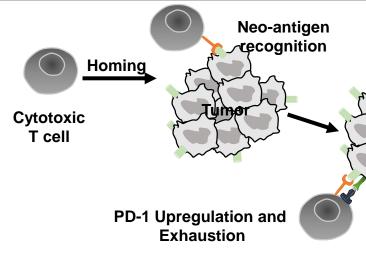
None

AACR Highlights

- Combination Therapies (using checkpoint blockade)
- CAR T cells
- Novel Targets
- Biomarkers
- Microbiome

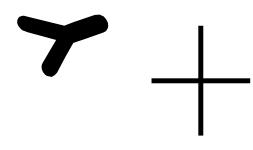

T-Cell Based Breakthroughs

PD-L1


upregulation

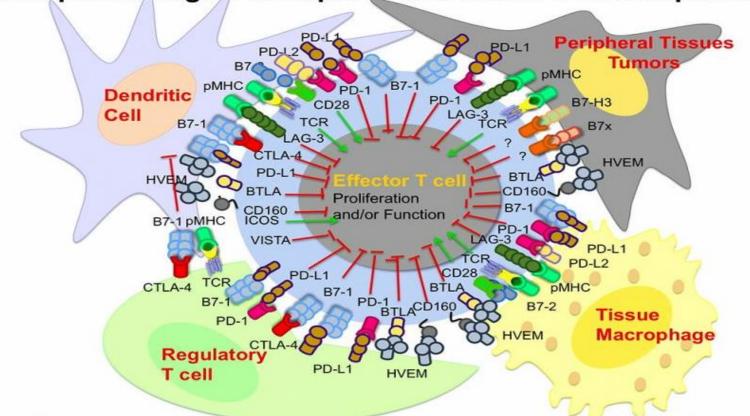
- Checkpoint Blockade
 - CTLA-4
 - PD-1/ PD-L1
- CAR T-Cells

CTLA-4 Critical in T cell Priming


PD-1 Critical in T cell Exhaustion

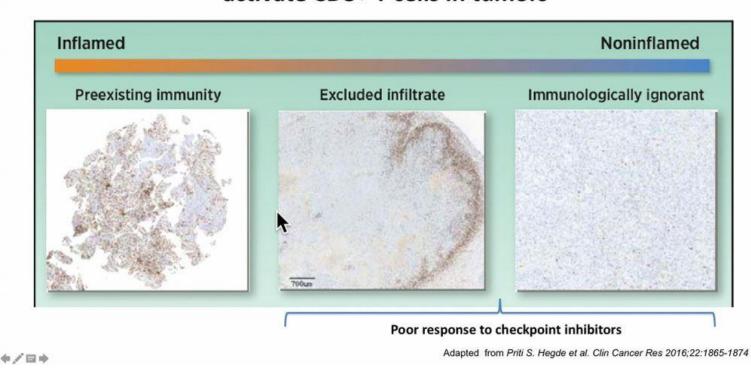
Immune Checkpoint Therapy: What is Next?

Anti-PD-1/PD-L1


Your favorite treatment

The future of cancer therapy

The Complexity of Host-Tumor Immunoregulation


Multiple strategies to improve anti-tumor T cell responses

Tumor Microenvironment and Immune Surveillance

The ultimate goal of cancer immune therapy is to recruit and activate CD8+ T cells in tumors

Dual-Checkpoint Blockade

 Effective in melanoma and lung cancer, but with significant toxicity

DART (Dual Anti-CTLA-4 and Anti-PD-1 Blockade in Rare Tumors)

- DART first NCI-sponsored basket study for rare tumors
- Ipilimumab/ nivolumab combination being tested in patients with 37 types of rare cancer
- Dr. Sandip Patel (UCSD) presented data on a cohort of 33 patients with neuroendocrine tumors

DART for NET

- Rare tumors comprise 25% of US cancer diagnoses
- DART open at 800 sites
- Accrual in NET completed in 3 months
- Clinical trials in rare tumors are feasible

DART for NET

- Prior studies of checkpoint inhibitor monotherapy showed response rates of ~5%
- Ipilimumab at 1 mg/kg given intravenously every 6 weeks plus nivolumab at 240 mg IV every 2 weeks
- No responses in low grade tumors (44% response rate in high grade vs. 0% low/ intermediate grade)

Age	Median 60.5
Sex	41% Female 59% Male
Objective Response	25%
6-month PFS	31%
Overall Survival	11 months
Grade 3 Toxicity	Liver 9% (LFTs) Colitis 6%

Dual Checkpoint Blockade for NET

- High grade extra-pulmonary NET behave like small cell lung cancer
- Checkpoint blockade has been approved for SCLC
- Dual agent checkpoint blockade shows evidence of activity in high grade NET
- Additional studies are underway

3rd Line Pembro in SCLC

Pembrolizumab as Third-Line Option for Extensive-Stage Small Cell Lung Cancer

- Pooled analysis of KEYNOTE-028 (phase Ib) and KEYNOTE-158 (phase II) of pembrolizumab in patients with advanced SCLC
- Immunotherapy naïve patients
- ≥ 2 prior lines of systemic therapy
- 10 mg/kg Q2W (KN028) or 200 mg Q3W (KN158) for 2 y, disease progression, or intolerable toxicity
- Response assessed by RECIST

3rd Line Pembro SCLC

- 64% had 2 prior lines of chemotherapy
- 36% had 3 or more prior lines of chemotherapy
- 57% had PD-L1 positive tumors
- Overall response rate was 19% (2% CR and 17% PR)
- 9/16 patients responded for > 18 months
- Median PFS was 2.0 months, and median OS was 7.7 months

Immunotherapy in Breast Cancer

Analysis of immune cell infiltrates as predictors of response to pembrolizumab in the neoadjuvant I-SPY 2 TRIAL

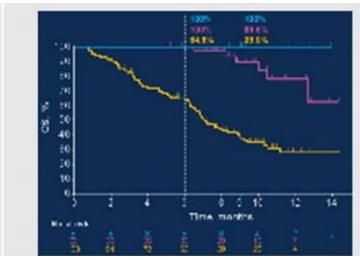
- I-SPY 2 trial (NCT01042379) is an adaptive phase II randomized, controlled, multicenter trial for women with stage II/III breast cancer
- Assessing new treatments and identifying novel therapies in specific patient subgroups based on molecular characteristics
- The primary endpoint is pathologic complete response at the time of surgery

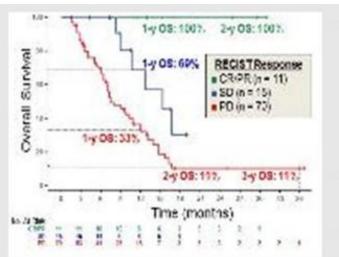
17

Immune Infiltration in Breast Cancer

 Until recently, results of checkpoint immunotherapy in breast cancer have been disappointing

 Perception that breast cancers are immunologically "cold"




Checkpoint Blockade Monotherapy

(Adapted from Dr. Elizabeth Mittendorf)

	Pembrolizumab (n=254)	Atezolizumab (n=112)	
Population	mTNBC	mTNBC	
Overall ORR	4.7% (Cohort A; n=170)	10%	
ORR in 1st line	23% (Cohort B; n=84)	26% (n=19)	

Survival in Responders

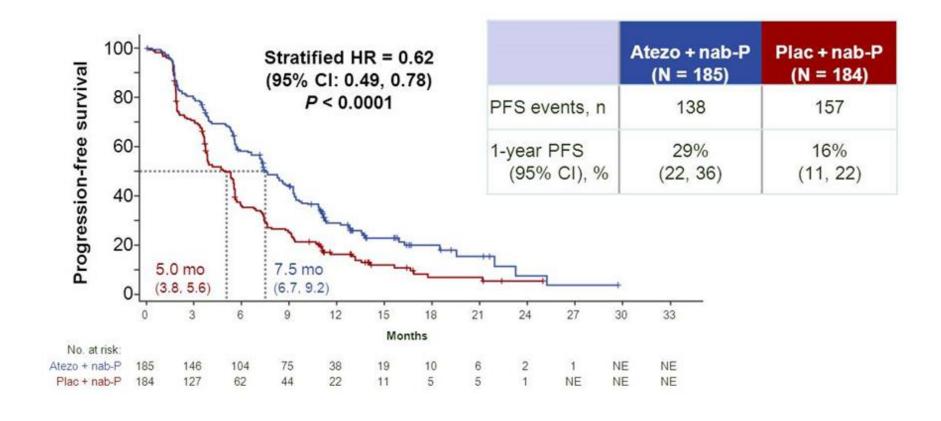
Adams S. et al., *Ann Oncol* 2019; 30: 397 – 404. Schmid P. et al., AACR 2017, Abstract 2986.

Impassion 130

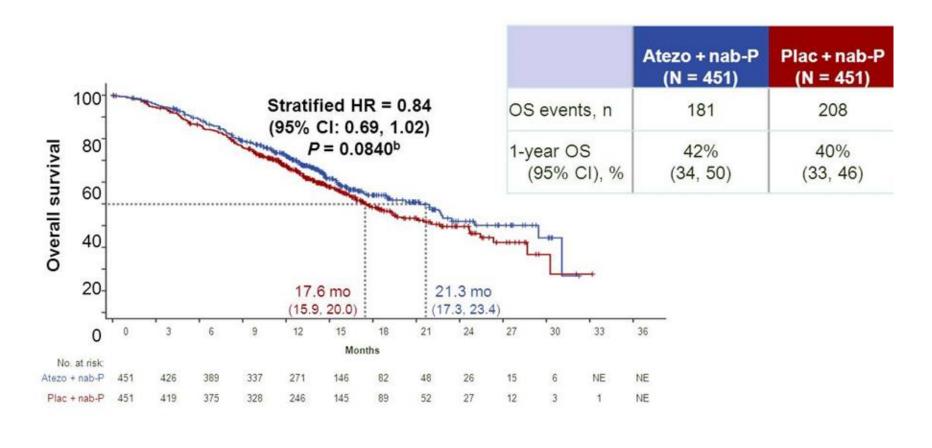
Phase III study IMpassion130^a Previously untreated metastatic or inoperable locally advanced TNBCb N = 902 patients randomized Stratification factors: Double blind; no crossover Prior taxane use Liver metastases 3. PD-L1 on ICc Atezo + nab-P armd Plac + nab-P armd ITT population: n = 451 ITT population: n = 451PD-L1 IC+ patients: n = 185 (41%) PD-L1 IC+ patients: n = 184 (41%) Key study endpoints . Co-primary: PFS (ITT and PD-L1 IC+) OS (ITT and PD-L1 IC+) · Secondary: ORR and DOR · Safety and tolerability

Baseline Characteristics

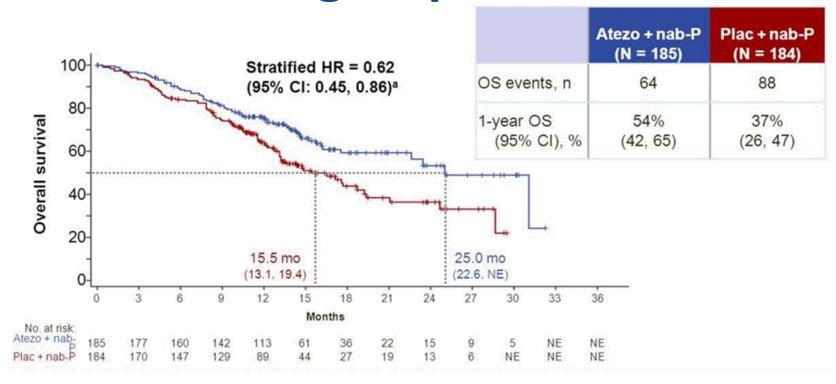
	<u>Atezo + nab-P</u> (N = 451)	<u>Placebo + nab-P</u> (N = 451)
Age	55 (20 – 82)	56 (26 – 82)
Ethnicity	68.3% Caucasian	66.7% Caucasian
ECOG 0/1	99.8%	99.8%
Metastatic Disease	89.8%	90.7%
Previous Therapy Taxanes Anthracyclines	51.2% 53.9%	51.0% 53.7%
PD-L1 Positive	41.0%	40.8%



PFS – Intention to Treat



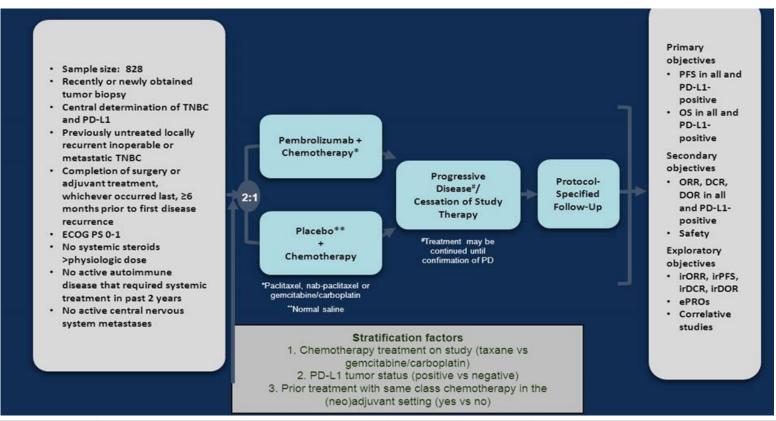
PFS - PD-L1+ Subgroup



OS – Intention to Treat

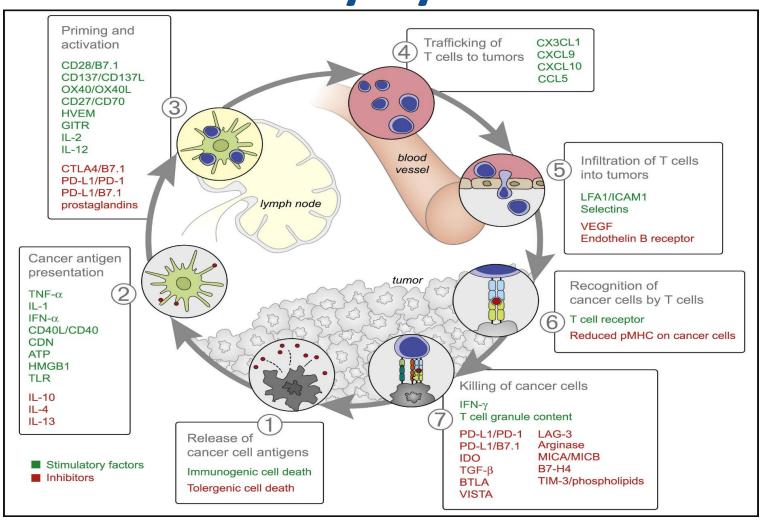
OS-PD-L1+ Subgroup

 Because of hierarchical statistical analysis procedure, testing of OS in PD-L1+ subgroup was not conducted


Immunotherapy for Breast Cancer

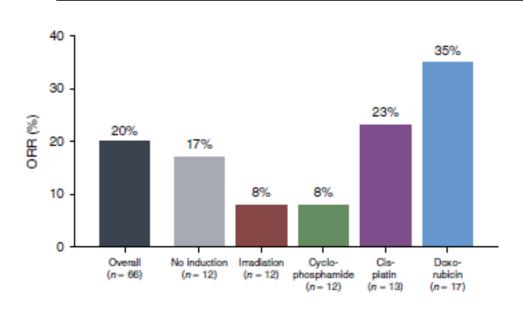
- BRCA status likely significant
- Impact of other systemic agents (cyclophosphamide, steroids, antibiotics)
- Biomarkers of response/ resistance

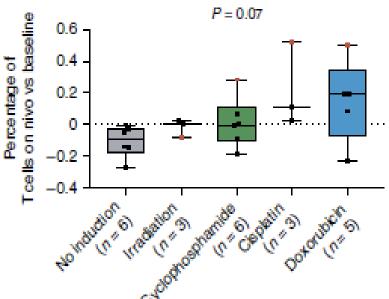
- PD-1/ PD-L1 inhibitor monotherapy not effective
- IMpassion 130 a positive study
- FDA approval for combination therapy with PD-L1+ in March 2019 contingent on a follow up Phase 3 study
- Other combination studies are ongoing


KEYNOTE - 355

Treatment	Sponsor	Setting	Study	Trial ID	Primary completion	
Keytruda + chemo	Merck	1st-line	Keynote-355	NCT02819518	Dec 2019	27

Cancer-Immunity Cycle





LETTERS

https://doi.org/10.1038/s41591-019-0432-4

Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial

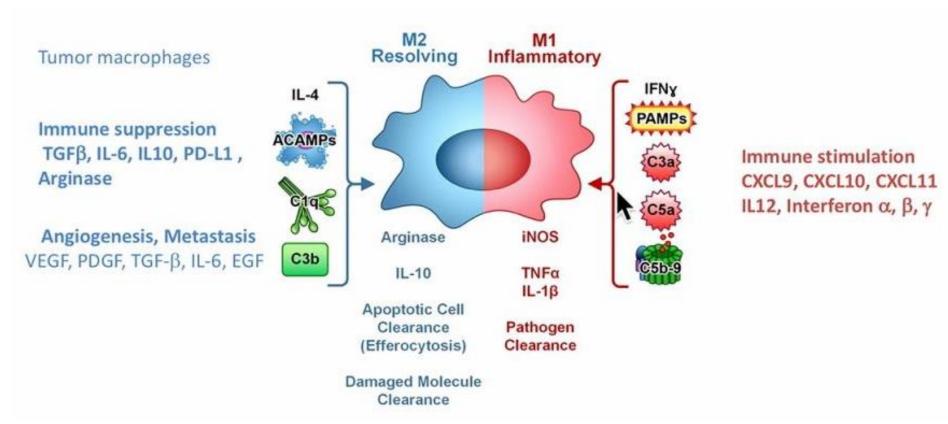
Voorwerk L. et al., Nat Med 2019 May 13. Epub ahead of print

Immune cell infiltrates post pembrolizumab in the neoadjuvant I-SPY 2 TRIAL

- Pre-treatment biopsies analyzed for immune subsets by multispectral imaging (N = 54)
- Favorable immune infiltrates expected
 - CD3+ T cells, CD8+ T cells, PD-1+ T cells
- Favorable immune infiltrates unexpected
 - FoxP3+ Tregs
- Unfavorable immune infiltrates
- Tumor associated macrophages (TAMs)

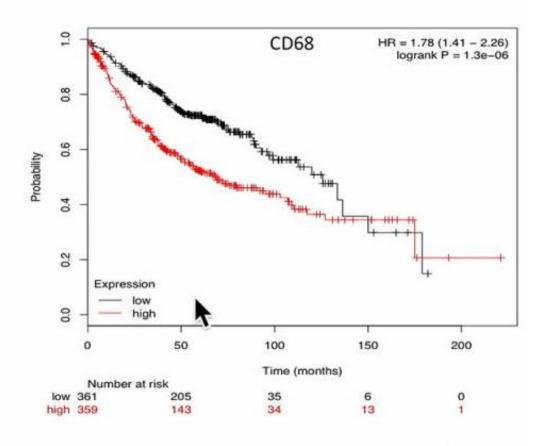
Poll Question

Which of the following immune cell infiltrates are <u>not</u> associated with favorable outcomes in pembrolizumab treatment of TNBC?


- a. CD3+
- b. FoxP3+
- c. Tumor-associated macrophages (TAMs)
- d. CD8+
- e. PD-1+ T cells

Novel Targets

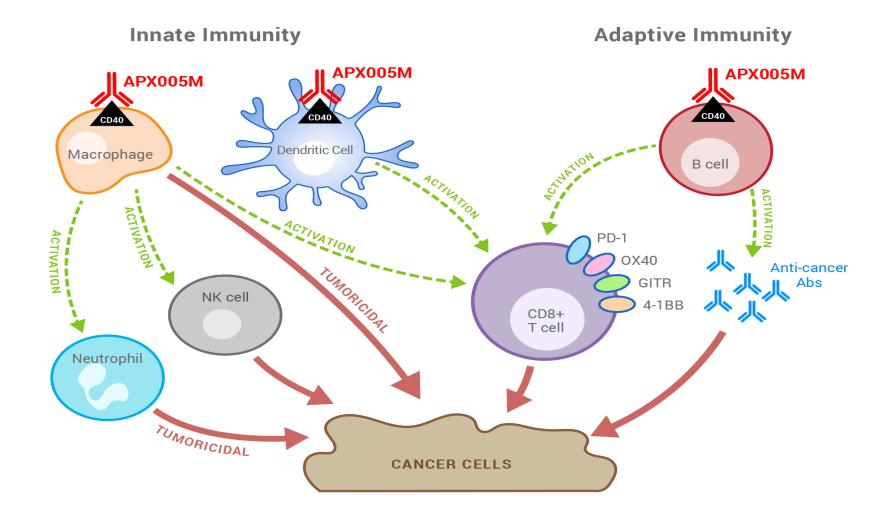
Macrophages and the Adaptive Immune Response


Ilya Metchnikoff – "look for the macrophages"

TAMs Linked to Tumor Progression

30-60% CD68+ cells in tumor

KM Plotter: Lanczky A, et al. Breast Cancer Res Treat. 2016;160(3):439-446.



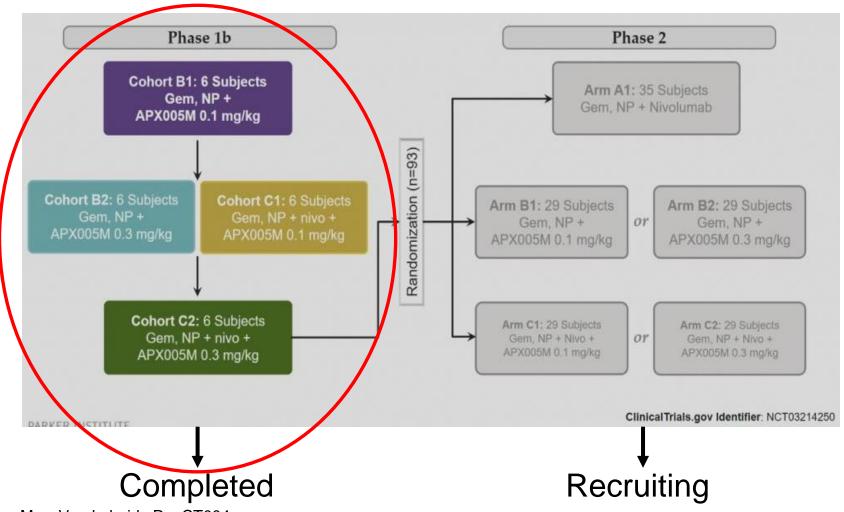
Reducing TAMs in the TME

Target	Compounds
CSF1R inhibitors	Pexidartinib PLX7486 Emactuzumab
PI3Kγ inhibitors	IPI-549
HDAC inhibitors	TMP195
CD40 (pleiotropic)	APX005M

CD40 Agonism

A Phase Ib study of APX005M with gemcitabine and nab-paclitaxel with or without nivolumab in untreated metastatic PDAC patients – CT004

- Monoclonal antibody targeting CD40
- CD40 a key member of the TNF receptor superfamily
- Expressed on APCs (monocytes, macrophages, and dendritic cells) as well as other immune and non-immune cells
- Critical in CD8 priming and CD4 help
- Reprograms Macs¹


Phase Ib study of APX005M plus Chemo +/- Nivo in PDAC

- Previously untreated PDAC, N = 30
- 4 cohorts
- 24 patients were evaluable
- Median follow up
 32 weeks

Cohort 1	Gemcitabine, Nab-Paclitaxel, APX005M 0.1 mg/kg
Cohort 2	Gemcitabine, Nab-Paclitaxel, APX005M 0.3 mg/kg
Cohort 3	Gemcitabine, Nab-Paclitaxel, APX005M 0.1 mg/kg Nivolumab
Cohort 4	Gemcitabine, Nab-Paclitaxel, APX005M 0.3 mg/kg Nivolumab

Study Design

O'Hara M,... Vonderheide R - CT004

Key Inclusion and Exclusion Criteria

Inclusion

- Metastatic pancreatic adenocarcinoma
- Measurable disease per RECIST 1.1
- Age ≥ 18
- ECOG status 0 or 1
- Baseline tissue mandatory
- Adequate hematologic, hepatic and renal function

Exclusion

- Previous systemic therapy in the metastatic setting
- Symptomatic CNS metastases
- Concurrent active invasive malignancy
- History of autoimmune disorders
- Concomitant use of immunosuppressive agent within 14 days of first dose

Results

Toxicity

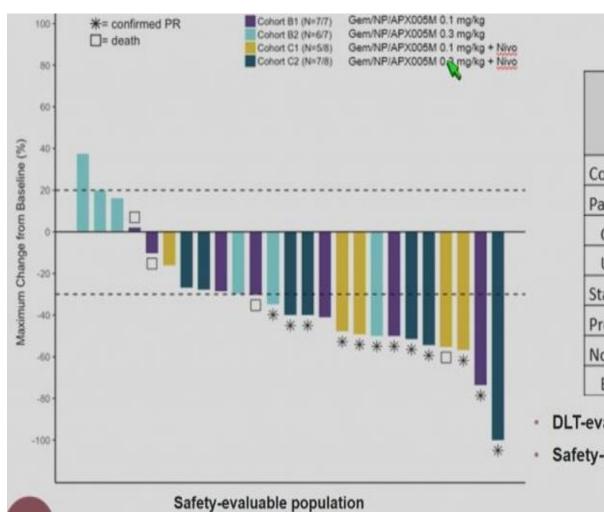
54% AEs leading to discontinuation

42% treatment-related serious AEs

8% (N=2) grade 4/5 toxicity – sepsis/ neutropenia

Efficacy

58% ORR (all partial)


92% clinical benefit rate (CR + PR + SD)

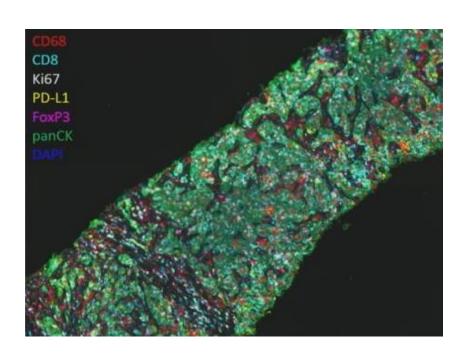
Immune Correlative Studies

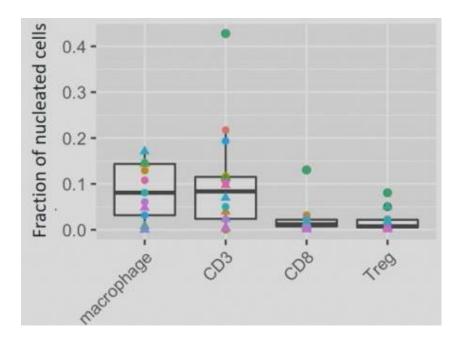
- Low CD8 and high macrophages in baseline TME
- Decrease in circulating mutant KRAS DNA
- Remodeling of myeloid compartment in TME

Promising Anti-tumor Activity

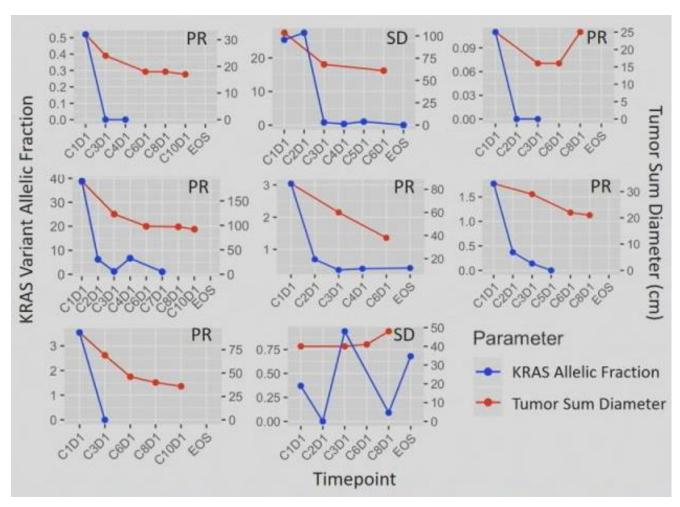
	Total (N=24)
Complete Response (CR)	0
Partial Response (PR)	13 (54%)
Confirmed PR	11
Unconfirmed PR	2
Stable Disease (SD)	9 (38%)
Progressive Disease (PD)	1 (4%)
Not Evaluable / No Scan	1 (4%)
Early Death	1

- DLT-evaluable population (N=24): ORR = 54.2%
- Safety-evaluable population (N=30): ORR = 46.7%

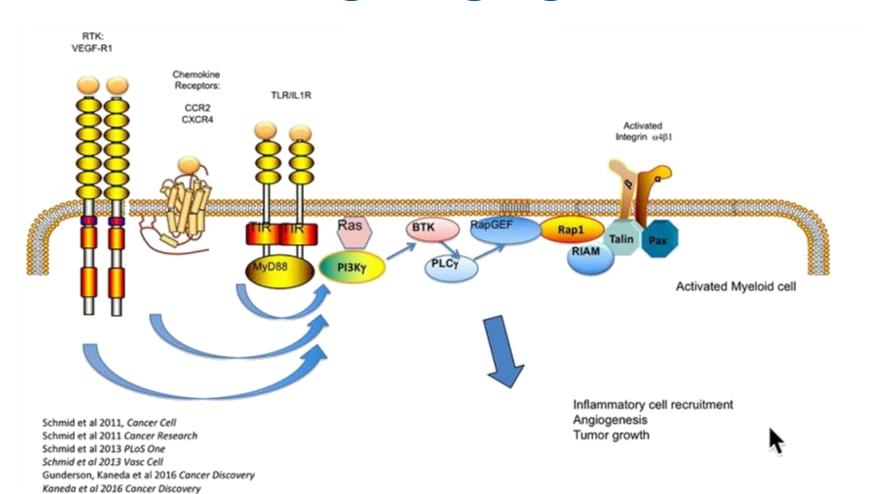

Grade 3 or 4 Treatment-Related AEs


MedDRA Preferred Term	Cohort B1 Gem/NP/ APX005M 0.1 mg/kg (N=7)	Cohort B2 Gem/NP/ APX005M 0.3 mg/kg (N=7)	Cohort C1 Gem/NP/nivo/ APX005M 0.1 mg/kg (N=8)	Cohort C2 Gem/NP/nivo/ APX005M 0.3 mg/kg (N=8)	Total (N=30)
Lymphocyte count decreased	5 (71.4%)	6 (85.7%)	5 (62.5%)	4 (50.0%)	20 (66.7%)
Neutropenia	3 (42.9%)	5 (71.4%)	1 (12.5%)	3 (37.5%)	12 (40.0%)
Anemia	2 (28.6%)	3 (42.9%)	4 (50.0%)	1 (12.5%)	10 (33.3%)
Fatigue	3 (42.9%)	2 (28.6%)	3 (37.5%)	0	8 (26.7%)
Aspartate aminotransferase increased	0	4 (57.1%)	0	3 (37.5%)	7 (23.3%)
Leukopenia	0	4 (57.1%)	1 (12.5%)	1 (12.5%)	6 (20.0%)

No grade 3/4 cytokine release syndrome was noted


Immune Profiling

Circulating Tumor DNA


Summary Points

- Phase I trial, so results should be taken in context
- Combination of chemotherapy and immunotherapy
 - Better in treatment-naive setting
 - Allows more time for induction of immune responses
- Risk of toxicity with multiple agents
- Rationale for induction chemotherapy with immunotherapy
 - Immunogenic cell death may sensitize to immunotherapy
 - Chemotherapy can be reintroduced on disease progression

Other TAM Targeting Agents

Foubert et al 2017 Canc. Immun. Res.

Late-Breaking Presentation at SITC 33rd Annual Meeting - 2018

Phase 1/1b Trial of IPI-549 Monotherapy and in Combination with Nivolumab in ~200 Patients with Advanced Solid Tumors **Dose Escalation** Expansion Monotherapy IPI-549 Monotherapy IPI-549 Solid Tumors Solid Tumors Dose Escalation Expansion Combination IPI-549 + Nivo Combination IPI-549 + Nivo Solid Tumors **NSCLC** Overcoming anti-PD1/PDL1 Fasistance MACROPHAGE REPROGRAMMING Melanoma (Immediate Prior Therapy) IN IMMUNO-ONCOLOGY SCCHN NSCLC - non-small cell lung cancer Overcoming Intrinsic anti-PD1/PDL1 Resistance SCCHN - squamous cell carcinoma of the head and neck **TNBC** TNBC - triple negative breast cancer (anti-PD1/PDL1 Therapy naïve) MDSC - myeloid-derived suppressor cell

Following Signal of IPI-549 Responses in

Biomarker-Based Enrichment for Target Cells

Dose Escalation

Accrual ongoing, but only 2/27 (7%) PR to date

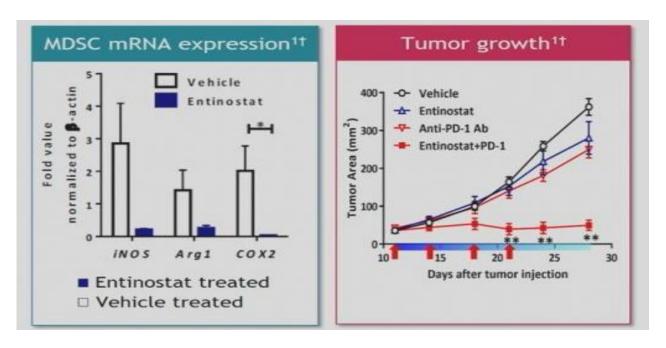
Mesothelioma

Adrenocortical

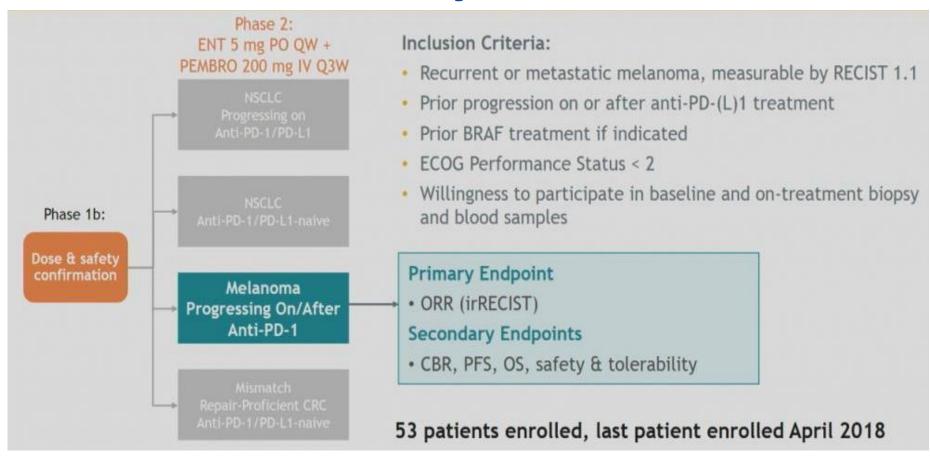
MDSC High

Completed

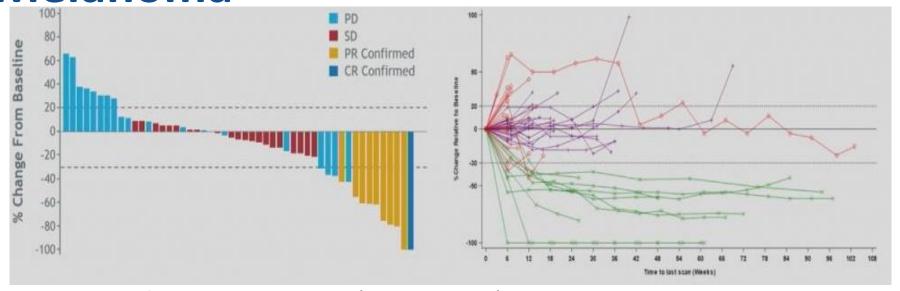
Courtesy of Infinity Pharmaceuticals


Enrolling

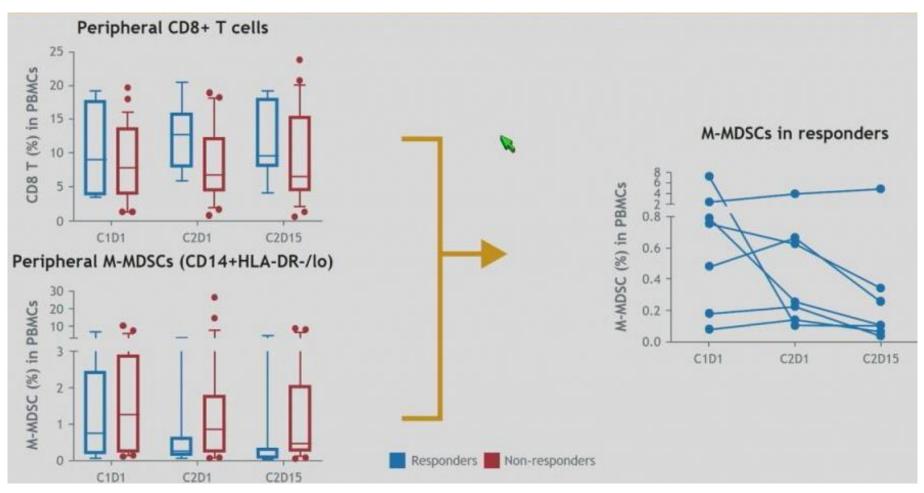
HDAC Inhibitor Plus Pembro In Melanoma After Progression on Checkpoint Blockade


ENCORE-601 Study

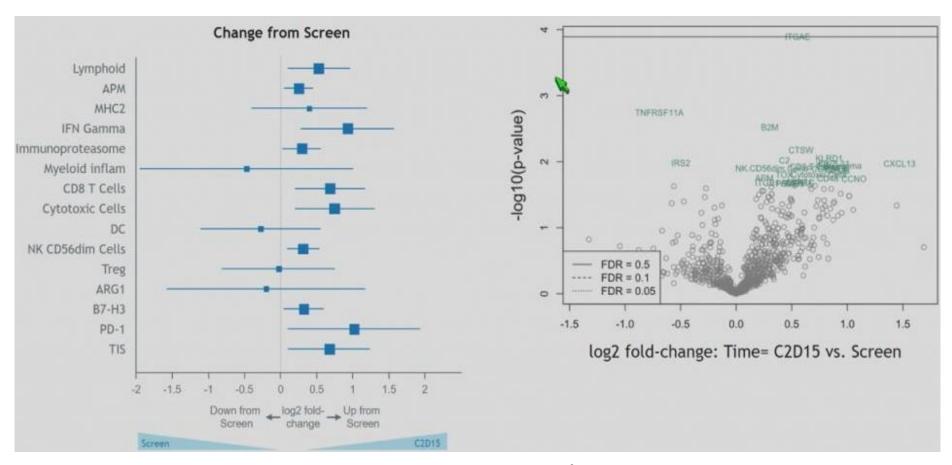
- Entinostat is oral class I selective HDAC inhibitor
- Entinostat inhibits MDSCs
- Synergy with PD-1 inhibition in pre-clinical models



ENCORE-601 Study


Clinical Outcomes Entinostat + Pembro in Melanoma

- 10 confirmed responses (1 CR, 9 PRs)
- ORR 19% (95% CI: 9 32%)
- Median duration of response 13 months
- 9 patients with SD x > 6 months
- 36% CBR


Circulating Immune Biomarkers

53

Immune Signatures Following Treatment

Nanostring analysis on tumor tissue post treatment (N = 7)

Summary

- Entinostat + Pembro showed encouraging activity in patients with progressive melanoma after single/ dual checkpoint blockade
- Toxicity primarily related to HDAC inhibition (nausea, fatigue, diarrhea)
- Preliminary predictors of response:
 - Reduction in circulating MDSCs
 - Baseline and tumor-specific increases in inflammatory pathways

CAR-T Cells

HER2-Targeted CAR T Cells in Sarcomas

- HER2 expressed in ~ 40% of osteosarcomas
- Limited success with HER2-directed therapies in sarcomas

Navai SA et al. Administration of HER2-CAR T cells after lymphodepletion safely improves T cell expansion and induces clinical responses in patients with advanced sarcomas. 2019 AACR Annual Meeting. Abstract LB-147. Presented April 1, 2019.

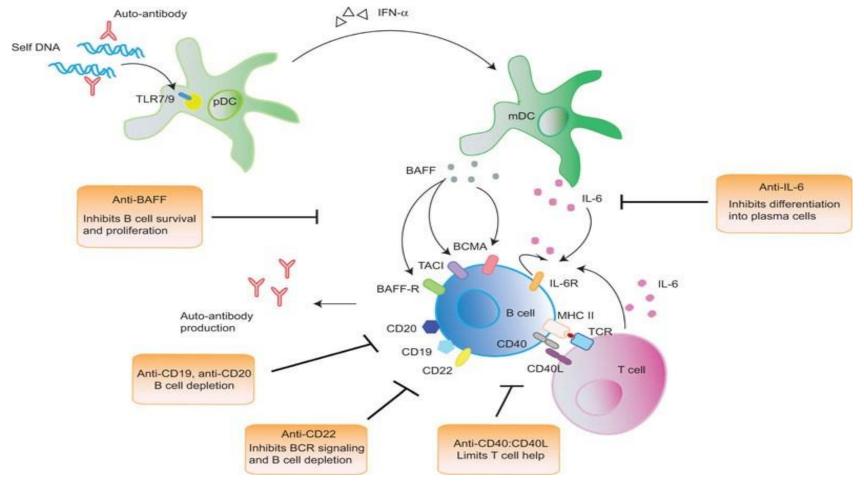
- Phase I trial 10 heavily-preated sarcoma patients
- 3 infusions of HER2-directed CARs after lymphodepletion with fludarabine +/-cyclophosphamide

HER2-Targeted CAR T Cells in Sarcomas

- 1 x 10^8 cells/ m2
- All patients developed lymphopenia and neutropenia
- 8/11 developed grade 1-II CRS
- T cells expanded in 9/11 patients
- TCR sequencing showed clonal expansion in 1 CR patient

Age	4 – 54
Histology	5 Osteosarcoma 3 Rhabdomyosarcoma 1 Ewing's 1 Synovial Sarcoma
Best Response	2 CR 3 SD 5 PD
CAR T detection	qPCR 10/10

CAR-T Cells for Multiple Myeloma



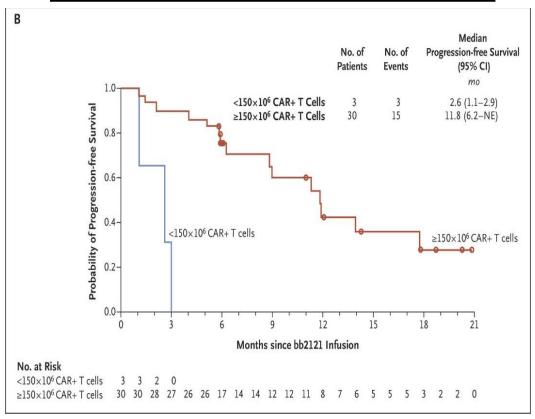
Anti-BCMA CAR T-Cell Therapy in Relapsed or Refractory Multiple Myeloma

- Despite advances in systemic therapies, MM remains incurable
- B-cell maturation antigen (BCMA) is member of TNF superfamily and is primarily expressed on malignant and normal plasma cells as well as some mature B cells
- Bb2121 are autologous T cells with 2nd generation CAR incorporating anti-BCMA single-chain variable fragment with CD137 (4-1BB) and CD3-zeta domains

Survival and Differentiation of B Cells into Antibody-Producing Plasma Cells

Anti-BCMA CAR T-Cell Therapy in Relapsed or Refractory Multiple Myeloma

- 6 of 15 complete responders did relapse
- Median PFS was 11.8 months
- CAR-T expansion associated with response
- CAR T cells persisted up to 1 year


Age	60 (37 – 75)
Best Response	15 CR (45%) 13 PR (40%)
Duration of Response	Median 10.9 months
Grade 3 Toxicity – Any	97%
Grade 3 Hematologic Toxicity	85%
CRS	25 (76%) Grade 3 = 2 (6%)
Neurological Toxicity	14 (42%) Grade 4 = 1 (3%)

Predictors of Response Anti-BCMA CARs

- Small sample size
- No statistical predictors of objective response
- Trend for superior responses in:
 - Low risk cytogenetics
 - Positive CRS syndrome
 - > 150 x 10⁶ cells infused
 - In vivo CAR T expansion

Amount of Infused CAR-T Cells

Summary of Anti-BCMA CARs

- Heavily pre-treated population with evidence for antitumor activity
- Unlike anti-CD19 CARs, most responses don't persist
- Toxicity remains prevalent
- Data emphasize need for ongoing translational research to improve both efficacy and safety of novel CAR T cell therapies

CAR-T Cells for Mesothelioma

Phase I Clinical Trial

- Mesothelin-directed CAR T cells
- Direct injections into the pleural cavity in 21 patients with malignant pleural disease
- 14 patients also received anti-PD1 checkpoint blockade
- 2 CR (based on PET), 5 PR, and 4 SD

Poll Question

Which of the following is <u>not</u> a common side effect of CAR-T therapy?

- a. Lymphopenia
- b. Cytokine Release Syndrome (CRS)
- c. Neutropenia
- d. Neurologic Toxicity
- e. Dermatologic Toxicity

Summary AACR Highlights

- Glass half-full
 - Durable responses are possible
- Glass half-empty
 - Majority of patients do not respond
- T cell-based treatments remain the focal point of immuno-oncology
- Novel combinations and overcoming resistance remain focal point of PD-1/ PD-L1 based therapies
- Novel targets, homing, and avoiding off-tumor effects are critical areas in CAR T-cell approaches