Cytokines: Interferons, Interleukins and Beyond

Michael B. Atkins, MD Georgetown-Lombardi Comprehensive Cancer Center

Presenter Disclosure Information

MICHAEL B. ATKINS, M.D

The following relationships exist related to this presentation:

BMS, Honorarium, Advisory Board Novartis, Honorarium, Advisory Board Pfizer, Honorarium, Advisory Board Merck, Honorarium, Advisory Board Genentech-Roche, Honorarium, Advisory Board X4 Pharma, Honorarium, Advisory Board Nektar, Honorarium, Advisory Board CellDex, Honorarium, Advisory Board

Disclosures

Advisory Board:

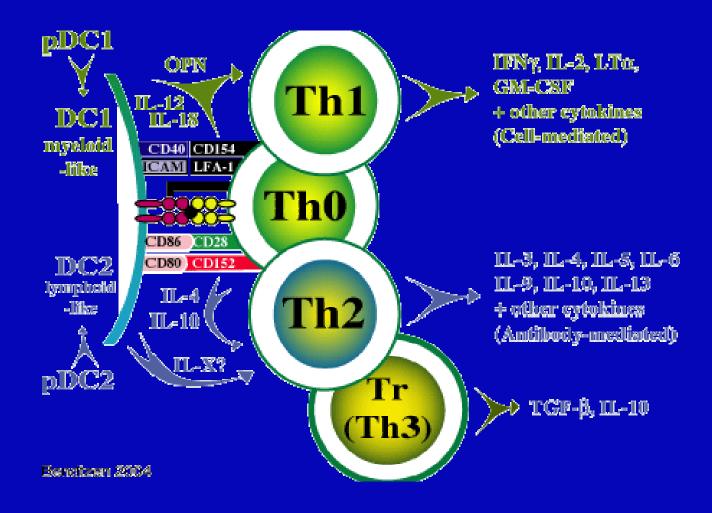
 Bristol-Myers Squibb, Novartis, Pfizer, Merck, Genentech-Roche, X4 Pharma, Nektar, CellDex, COTA, Caris Biotech, Genoptix

Cytokine Therapy: Learning Objectives

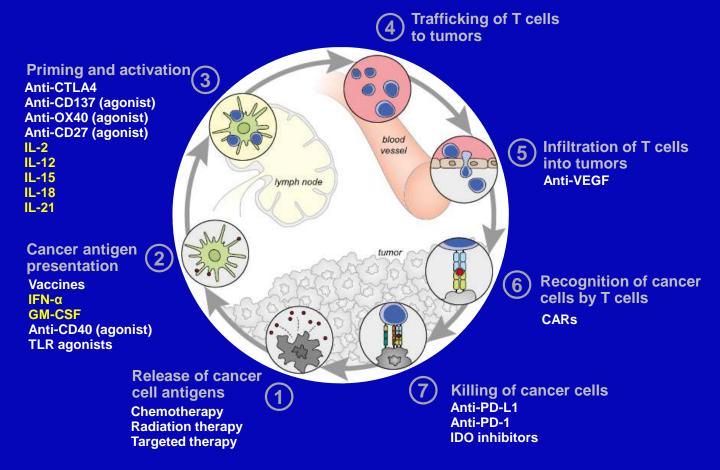
Describe the players
Understand the main effects of cytokines on immune cells
Describe clinical utility and toxicity

IFN
IL-2
Other cytokines

Current and Future Directions


What are cytokines?

- Diverse family of immune cell regulators:
 - Interferons
 - Interleukins
 - Tumor Necrosis Factors
 - Other


Cytokines interact with cell surface receptors and influence:

- Gene transcription and activation (of other cytokines)
- Proliferation
- Cytotoxicity
- Immunological memory
- Movement of cells into sites of inflammation
- Cytokines trigger a cascade of immunological events

Cytokine Sources, Properties

A Roadmap of Immunotherapy-Tumor Interactions

Chen DS, et al. Immunity. 2013;39:1-10.

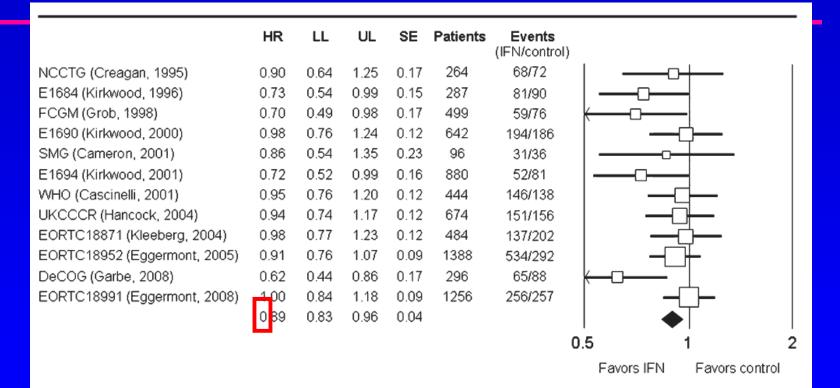
Role of IFN alpha in Cancer Therapy

Adjuvant therapy of Melanoma

Treatment of RCC

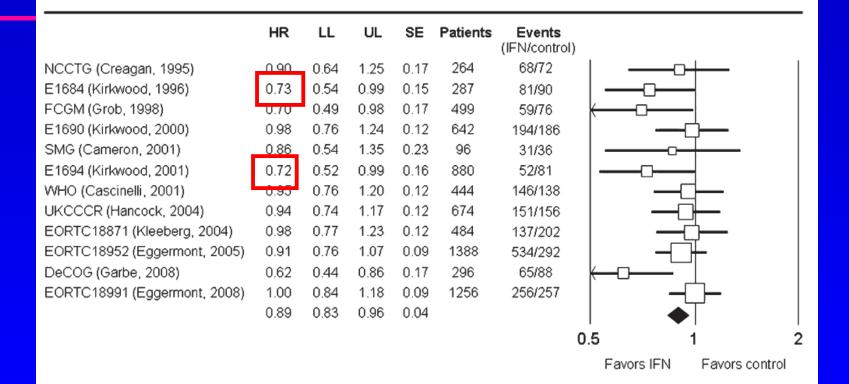
- Meta-analysis shows IFN alone produces survival advantage over chemotherapy (Coppin et al)
- Activity inferior to sunitinib in Phase III trials
- Bevacizumab + IFN an approved regimen

Heme Malignancies


- Hairy Cell Leukemia
- CML

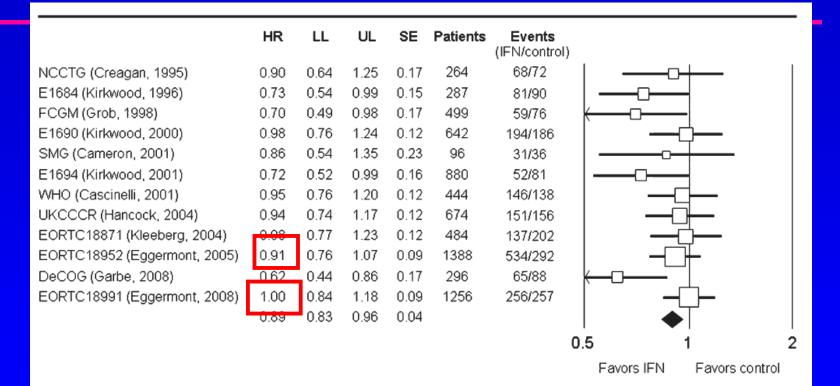
Adjuvant IFN-α Regimens

Schedule	Dose F	equency Duration	
Low Dose			
	3 MIU	3 x weekly	18 – 24 months
Intermediate Dose			
Induction	10 MIU	5 x weekly	4 weeks
Maintenance	10 MIU	3 x weekly	12 -24 months
	5 MIU	3 x weekly	24 months
High Dose			
Induction	20 MIU/m ²	5 x weekly	4 weeks
Maintenance	10 MIU/m ²	3 x weekly	11 months


PEG IFN is equivalent to intermediate dose IFN

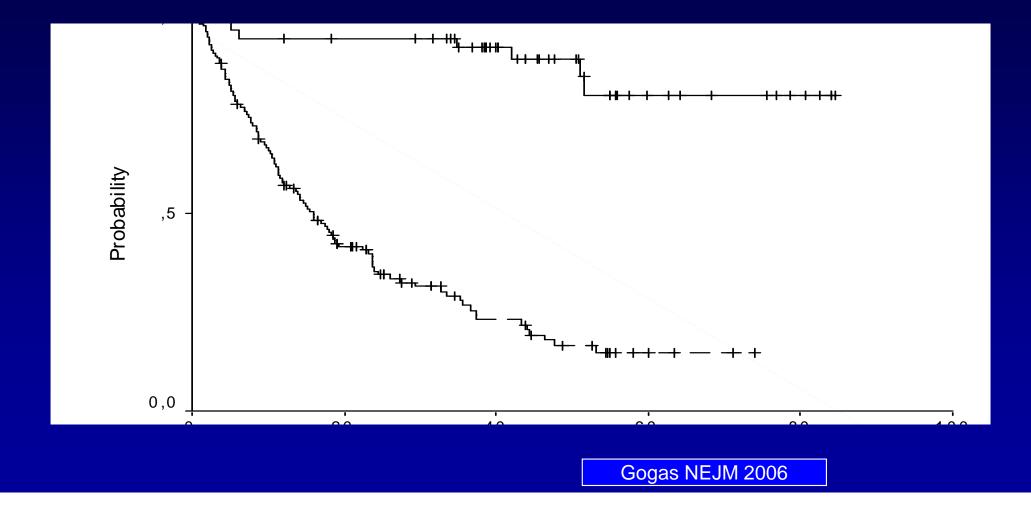
Meta-analysis of IFN: Impact on overall survival

Adjuvant interferon (various doses and durations) improved overall survival 11%, (p=0.002) Mocellin et al JNCI 2010;102:493


Meta-analysis of IFN: Impact on overall survival

High dose IFN shows OS benefit in patients with high risk melanoma (p=0.002)

Mocellin et al JNCI 2010;102:493


Meta-analysis of IFN: Impact on overall survival

LD, ID and PEG IFN do not produce overall survival benefits in patients with high risk melanoma

Mocellin et al JNCI 2010;102:493

IFN Alpha TTP by Autoantibody Status

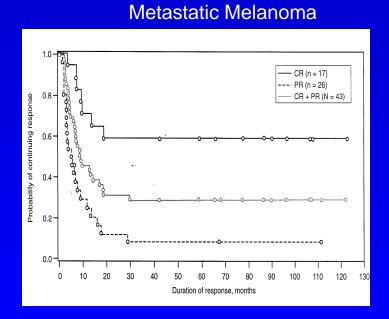
Adjuvant IFN: Conclusions

- HD IFN has significant RFS and likely OS benefit only positive trials
- Toxicity is primarily a flu-like syndrome of variable severity; can be managed with dose reductions
- Benefit may be correlated with autoimmunity
- Benefit of IFN appears proportionate to risk: benefits > risks of Rx when risk of relapse is > 30%
- Full staging according to AJCC staging system is necessary to assess risk and choose treatment
- Better treatments needed

Melanoma: New Adjuvant Therapy Approaches

- Biochemotherapy (RFS but no survival benefit relative to IFN)
- Ipilimumab (EORTC Trial -FDA approved 10/15, E1609)
- BRAF inhibitors
- Anti-PD1
 - BMS : Ipi vs Nivo trial
 - SWOG- Pembro vs IFN trial or Ipi
 - EORTC- Pembro vs. placebo with crossover

HD IFN's days are numbered in melanoma adjuvant therapy


IL-2 History

- 1965 Factor stimulating DNA synthesis derived from lymphocyte cultures¹
- 1976 Factor identified as a T-cell growth factor²
- 1983 First clinical use of lymphocyte-derived IL-2 for melanoma³
- 1984 Clinical trial of cell-line-derived IL-2 in cancer and AIDS⁴
- 1984 rIL-2 produced in *E coli* demonstrated the same range of biological activity as native IL-2²
- 1985 Clinical trials with rIL-2 for advanced malignancies²
- 1992 rIL-2 (aldesleukin) approved for metastatic RCC
- 1998 rlL-2 (aldesleukin) approved for metastatic melanoma

IL-2 Treatment

- IL-2 = 600,000 international units per kg IVB q 8 hrs x 14 planned doses/ 5 days cycle;
- Second cycle given after 1 week break. Scans repeated
 6 and 12 weeks.
- More IL-2 for responders (max 3 courses).

HD IL-2 Therapy- Durable Responses

*Atkins et al JCO, 1999 (N=270)

Fyfe et al JCO, 1992 (N=255)

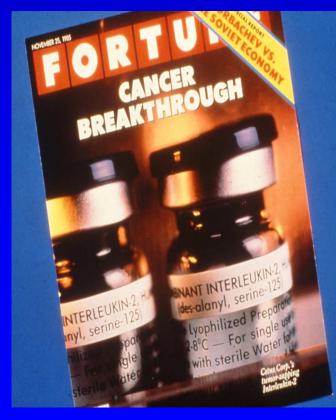
HD IL-2 produces durable responses in 6-10% of patients with advanced Mel and RCC Few relapses in patients responding for over 2.5 years (likely cured) FDA approved in 1992 (RCC) and 1998 (melanoma)

IL-2 Side Effects

Physiologic Categories

- Constitutional (flu-like)
- Cardiovascular
- Gastrointestinal
- Pulmonary
- Metabolic
- Neurologic

- Hepatic
- Renal
- Dermatologic
- Capillary leak
- Hematologic/ immunologic


HD IL-2 Toxicity Management

- Approach is to provide IL-2 doses when patients are stable; skip doses in patients who are unstable
- Toxicity usually resolves in 8-24 hours
- Patients receive on average 10-12 doses in first weeks and 8-10 doses in 2nd week (18-22 doses during a 3 week course of therapy)

Toxicity is manageable in experienced hands

High Dose IL-2 Therapy

1985

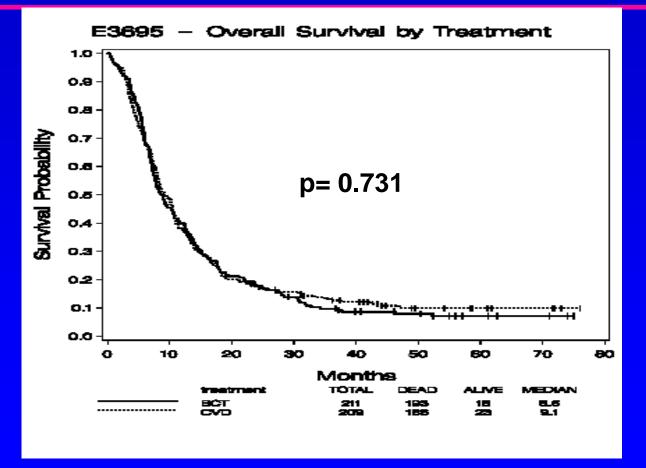
2015

- A case study for what is wrong with cancer clinical development
- Uncontrolled
- No target
- No target population
- Toxic
- Inpatient
- No correlates

Proof of Principle

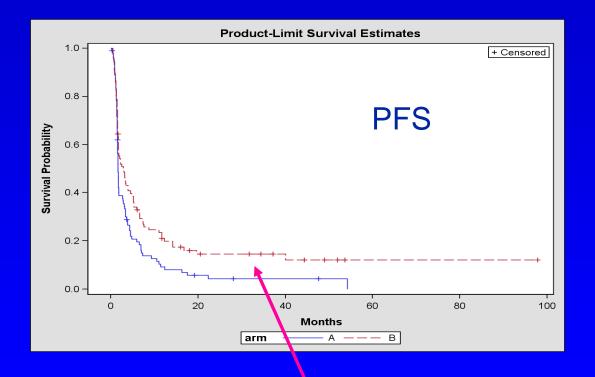
Phase III Trials of HD vs LD IL-2 in RCC

	<u>Regimen</u>	<u>N</u>	<u>RR</u>	<u>p-value</u>
	HD IV IL-2	156	21%	
NCI SB	VS			0.05
	LD IV IL-2	150	13%	
	HD IV IL-2	95	23%	
CWG	VS			0.02
	LD SC IL-2/IFN	91	10%	


More durable responses (9 vs 1), especially CRs (7 vs 0; p =0.01), with HD IL-2 No difference in PFS, but trends in terms of OS

Yang et al JCO 2003; McDermott et al JCO 2005

Melanoma: Biochemotherapy: "A Case Study"


- Phase II studies and meta-analyses suggested an advantage for cisplatin / IL-2-based biochemotherapy over chemotherapy or IL-2 alone
 - 50% response rates
 - 10-20% CR, 10% durable CR
- A single institution Phase III trial confirmed benefit of BCT over chemotherapy alone
- Phase III trials were initiated through the Cooperative Group mechanism

E3695: Cocurrent Biochemotherapy (BCT) vs CVD – Final Result

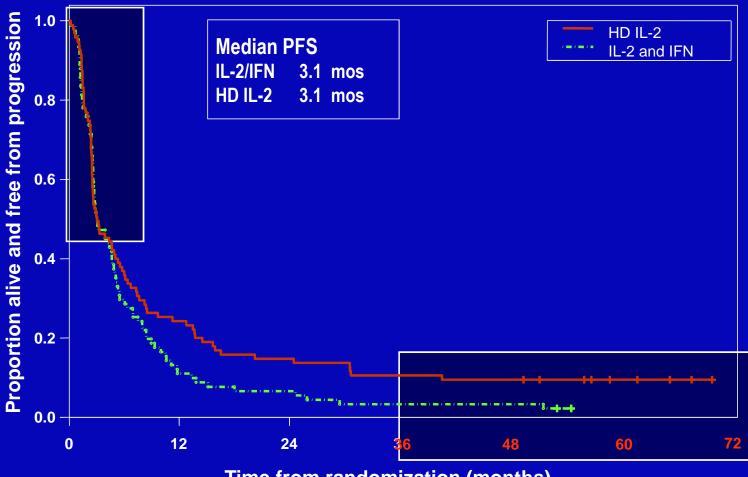
Atkins et al J Clin Oncol 2008

IL-2 +/- gp100: 209-217(210M) peptide vaccine: Focusing Immune Response

Hallmark of immunotherapy: Very few relapses beyond 2 years

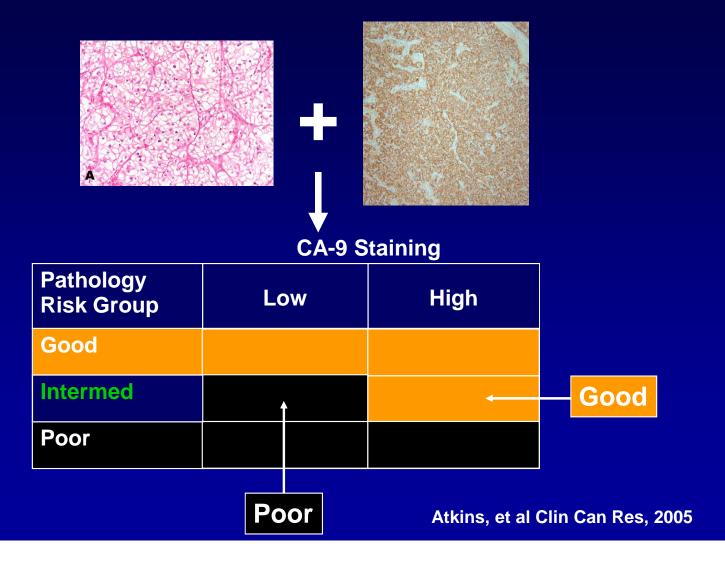
Scwhartzentruber et al

HD IL-2 Therapy (Melanoma and RCC)


- High dose IL-2 appears to be useful, but it is toxic, inpatient, expensive and impractical; therefore its use remains limited to selected patients treated at experienced centers
- Efforts to develop more tolerable regimens have been unsuccessful
- Efforts to better select patients who might benefit from therapy were warranted
- Newer immunotherapies are needed

Treatment Selection Opportunities

Tumor characteristics
Tumor microenvironment
Host immunotype


How do we get beyond the 15-20% Response Barrier?

CWG Phase III RCC: PFS

Time from randomization (months)

Combined UCLA/DFHCC Model

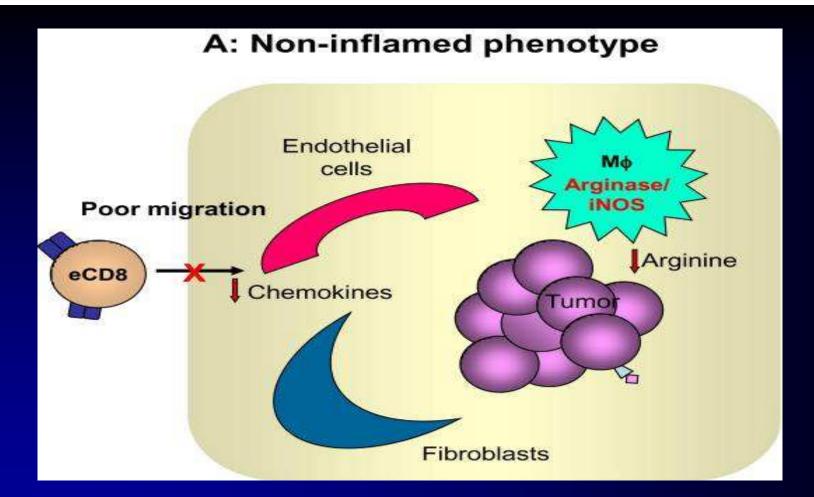
Activity of IL-2 is greater than package Insert

Response*	%
Historical rate	14
IL-2 Select Trial (all pts n=120)*	28
	p=0.0016
	95% CI=20.5-37.3%

Likely explanations for improved RR include:

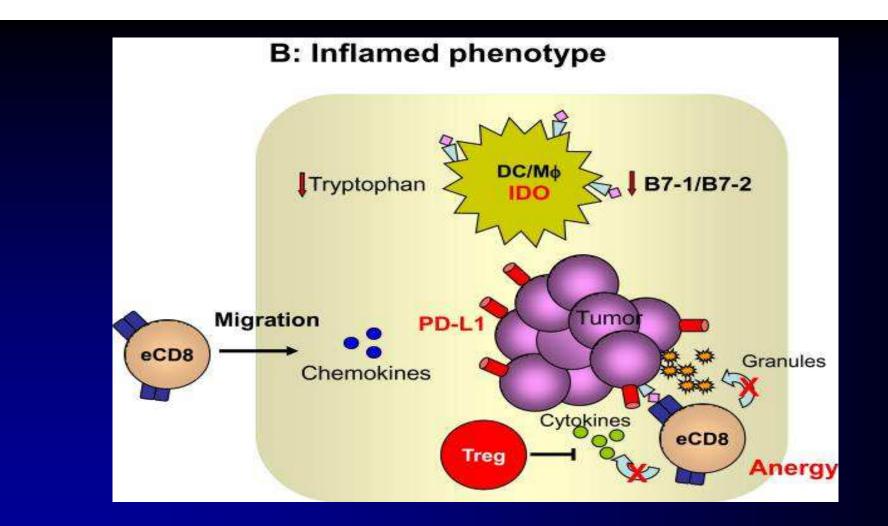
- 1) Enhanced "pre-screening"
 - smaller non-clear cell population
- 2) Impact of alternative therapies on IL-2 referral patterns
- 3) Application of debulking nephrectomy
 - fewer patients treated with primary in place

*Using WHO Criteria


McDermott et al ASCO 2010

Response by Tumor Features

Tumor risk group	RR (95% CI)	P-value*
Good (n=11)	27% (6%-61%)	0.89
Intermediate (n= 83)	24% (15%-35%)	
Poor (n=25)	28% (12%-49%)	


CA-9 Score		
High (>85% n=77)	22% (13%-33%)	0.19
Low (<u><</u> 85% n=39)	33% (19%-50%)	

Combined Score		
Good (n=74)	23% (14%-34%)	0.39
Poor (n=42)	30% (17%-46%)	

High expression of vascular markers, macrophages, fibroblasts + Low inflammation and chemokines, few lymphocytes = Poor effector cell trafficking

Gajewski, Curr Opin Immun 2011

High levels of innate immune signals, chemokines for T cell recruitment But, negative immune regulators dominate

Gajewski, Curr Opin Immun 2011

HD IL-2 Selection: Efficacy Data

Class 2

 Better PFS
 p = 0.046
 Better RR
 p = 0.0384
 1-sided FET
 OS similar
 p = 0.19

Annual'09 Meeting

ASCO

	DASL Class 1: Antigenic (n=21)	DASL Class 2 Immune (n=7)
Response (%)		
Complete	2 (10%)	2 (29%)
Partial	6 (28%)	4 (57%)
Total	8 (38%)	6 (86%)
Durable (>18 mo)	3+ (14%)	3+ (43%)
Survival (mo)		
Median OS	22.8	27.0
Median PFS	2.5	19.4

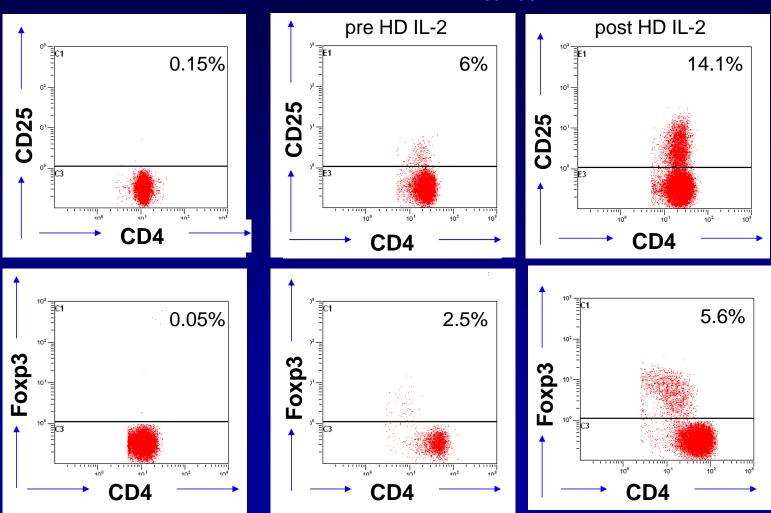
Ryan Sullivan et al

RCC: Response by tumor expression of PDL1/B7-H3

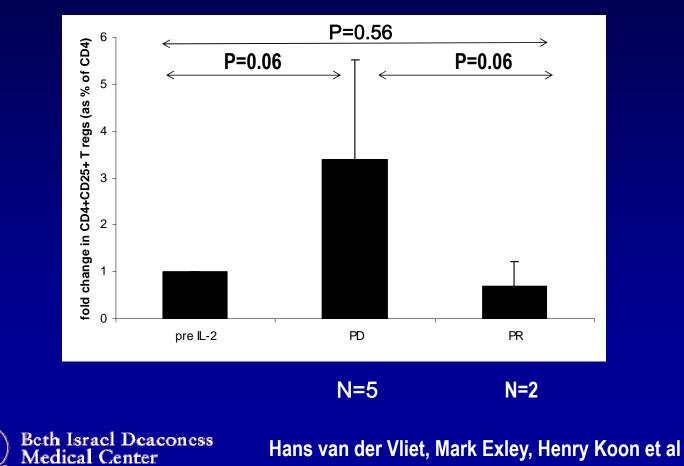
	RR	p-value*
PDL1+ Tumor		
Negative (n=95)	19%	0.012
Positive (n=18)	50%	
B7-H3 Tumor		
Negative (n=28)	10.7%	0.075
Positive (n=85)	29.4%	

McDermott, Atkins IL-2 Select Trial Clin Ca Res 2015 IHC performed at Mayo Clinic by Kwon, Leibovich, et al.

Vitiligo and hypothyroidism following HD IL-2 Rx


Treated May 1986 – Alive today without disease

Atkins et al NEJM, 1988


HD IL-2: Increases both CD4+CD25+ and CD4+Foxp3+ T cells

health

cancer

No increase in CD4⁺CD25⁺ regulatory like T cells in patients responding to HD IL-2

Conclusion for Biomarker Studies

- IL-2 works best in tumors with inflamed microenvironment
- Activity primarily seen in patients with defective Tregs development – association of benefit with autoimmunity

Sets stage for TIL and checkpoint inhibitor therapy

IL-2 and other Cytokines: Future Directions

- Develop an IL-2 that more selectively activates CD8 T cells, rather than Tregs
- Study HD IL-2 following checkpoint inhibitor therapy
- Study IL-2 in combination with checkpoint inhibitors
 - IL-2 + ipilimumab
 - IL-2 + PD1 blocker
- IL-2 in combination with T cell therapy
- Identify cytokines that are more selective T cell activators
 - IL-15, IL-21

Other Cytokines Therapy Of Cancer

Cytokine	Mechanism	Activity	Toxicity	Status
GM-CSF	DC activation	? RFS in stage IV NED MM, Synergy with Ipi	+	Combination with checkpoint inhibitors
IL-12	Th1 shift, IFN γ, Antiagniongenic	Some with IL-2	++	No current investigations
IL-15	Prolif and diff of CD8+ T cells and NK cells, more potent than IL-2	SD as best response	++	Ongoing studies
IL-18	IFN γ inducer, Fas and T cell dependent killing, Induces memory, Antiangiogenic	Little	+	Phase II in melanoma ongoing
IL-21	Stim of activated CD8+ T cells, B cell Diff Stat1 and 3 signaling	Rare responses in MM	+	Studies with checkpoint inhibitors

Take Home Messages

- IFN alpha still has a role as adjuvant treatment for patients with high risk melanoma
- HD IL-2 has a role in treatment of patients with advanced melanoma and RCC
- These roles are rapidly being replaced by checkpoint inhibitors
- Other cytokines do not have established anti-tumor activity
- Future of agents will likely be in combination with checkpoint inhibitors (many), in relapsed patients (IL-2) or to support T cell therapy (IL-2)

Lessons and Take Home Messages

Key points

- IFNa still has a role as adjuvant treatment for pts with high risk melanoma

- HD IL-2 has a role in Rx of patients with advanced melanoma and RCC
- These roles are rapidly being replaced by checkpoint inhibitors
- Other cytokines do not have established anti-tumor activity

Lessons learned

•Cytokines established proof of principal that immunotherapy can be curative

•Potential impact on the field

-Future of agents will likely be in combination with checkpoint inhibitors (many), in relapsed patients (IL-2) or to support T cell therapy (IL-2)