Immunotherapy of Melanoma

Walter J. Urba MD PhD Robert W. Franz Cancer Research Center Earle A. Chiles Research Institute Providence Cancer Center @walterurba @chilesresearch

Disclosures

- Honoraria and travel from BMS, Celldex and Green Peptide for advisory board/data monitoring committee.
- Providence Cancer Center receives institutional support as member of BMS International Immuno-Oncology Network
- Payment from MedImmune for service on Data Safety Monitoring Committee.
- Institutional support in form of a sponsored research agreement between MedImmune and Providence.

Autocrine Loop: IL-2 Produces More Effector T-cells

Presented By David McDermott at 2016 ASCO Annual Meeting

TCGF Therapy for Metastatic Melanoma T-cell proliferation with HD IL-2

Baseline

After Treatment

Provided by D. Schwartzentruber, MD

Presented By David McDermott at 2016 ASCO Annual Meeting

Remission is Possible with TCGFs

Atkins et al. J Clin Oncol. 1999

Presented By David McDermott at 2016 ASCO Annual Meeting

IL-2 Clinical Trials

- IL-2 plus stereotactic radiotherapy
- IL-2 plus TIL
- IL-2 plus engineered lymphocytes
- NKTR-214 (pegylated IL-2)

Checkpoint Inhibitors

There Are Many "Accelerators" and "Brakes" on T cells within the Tumor Microenvironment

Presented By Jeffrey Weber at 2015 ASCO Annual Meeting

T-cell Activation by Ipilimumab (anti-CTLA-4, site of action in the periphery/lymph nodes) and Nivolumab (anti-PD-1, site of action in the tumor microenvironment)

Ipilimumab Augments T-Cell Activation and Proliferation

presentation, abstract #4, ASCO 2010.

CTLA-4: The Brake on T-Cell Activation

T-cell receptor: antigen/MHC

CD28 B7

CTLA-4 B7

Vaccine?

Ipilimumab: Pattern of Response

Screening

Week 16: continued improvement

Week 72: complete remission

Week 108: complete remission

Maggon et al, 2011

Ipilimumab Analysis of Overall Survival

	1 2 Y	ears 3	4
Survival Rate	lpi + gp100 N=403	lpi + pbo N=137	gp100 + pbo N=136
1 year	44%	46%	25%
2 year	22%	24%	14%

Hodi et al, NEJM (August 2010)

Ipilimumab: Pooled Survival Analysis From Phase II/III Trials in Advanced Melanoma

Hodi S, et al. 2013 European Cancer Congress. Abstract LBA 24. Schadendorf D, et al. J Clin Oncol. 2015;[Epub ahead of print].

Immune System is the Target for Novel Treatments for Cancer

Pembrolizumab for Melanoma

72-yr-old male with symptomatic progression after bio-chemotherapy, HD IL-2, and ipilimumab

CheckMate 066 and KEYNOTE 006: OS

Nivolumab vs DTIC in *BRAF*-wild type, previously untreated melanoma^[1]

Pembrolizumab vs Ipilimumab in Advanced Melanoma^[2]

EARLE A. CHILES RESEARCH INSTITUTE

1. Robert C, et al. N Engl J Med. 2015;372:320-330.
2. Robert C, et al. N Engl J Med. 2015

Drugs Blocking PD-1/PD-L1 are Active Against Multiple Cancer Types

Durable objective tumor regressions in patients with:

- Melanoma (17-40% of patients responding)
- Lung cancer (10-30%)
- Kidney cancer (12-29%)
- Bladder cancer (25%)
- Ovarian cancer (6-23%)
- Head and neck cancer (14-20%)
- Hodgkin's lymphoma (87%)
- Gastric cancer, breast cancer, mesothelioma, etc.....

Drugs targeting a single molecular pathway have an unprecedented activity spectrum and provide a "common denominator" for cancer therapy

Combination Therapy with Checkpoint Inhibitors

Overall Survival After Checkpoint Blockade

Nivolumab and Ipilimumab versus Ipilimumab

Postow MA, et al. N Engl J Med. 2015;372:2006-2017.

CA209-067: Study Design

*Verified PD-L1 assay with 5% expression level was used for the stratification of patients; validated PD-L1 assay was used for efficacy analyses. **Patients could have been treated beyond progression under protocol-defined circumstances.

Presented By Jedd Wolchok at 2016 ASCO Annual Meeting

Response in Target Lesions

Progression-Free Survival (Intent-to-Treat Population)

Database lock Nov 2015

Presented By Jedd Wolchok at 2016 ASCO Annual Meeting

Progression-Free Survival by Tumor PD-L1 Expression

Potential Biomarker

• For the original PD-L1 PFS analysis, the descriptive hazard ratio comparing NIVO+IPI vs NIVO was 0.96, with a similar median PFS in both groups (14 months)

Database lock Nov 2015

Presented By Jedd Wolchok at 2016 ASCO Annual Meeting

- Toxicity related to ipilimumab appears to be dose related
- Toxicity-related death occurred in < 1% of cases

Common (> 20%)

- Rash, pruritus
- Fevers, chills, lethargy
- Diarrhea/colitis

Occasional (3% to 20%)

- Hepatitis/liver enzyme abnormalities
- Endocrinopathies: hypophysitis, thyroiditis, adrenal insufficiency

Rare (< 2%)

- Episcleritis/uveitis
- Pancreatitis
- Nephritis
- Neuropathies, Guillain-Barré, myasthenia gravis
- Lymphadenopathy (sarcoid)
- Thrombocytopenia
- Toxic epidermal necrolysis, Stevens-Johnson syndrome

Summary of PD-1/PD-L1 Blockade Immune-Mediated Toxicities

• Toxicity less common than with anti–CTLA-4 but still can be fatal

Occasional (5% to 20%)

- Fatigue, headache, arthralgia, fevers, chills, lethargy
- Rash: maculopapular, pruritus, vitiligo
 - Topical treatments
- Diarrhea/colitis
 - Initiate steroids early, taper slowly
- Hepatitis, liver/pancreatic enzyme abnormalities

- Infusion reactions
- Endocrinopathies: thyroid, adrenal, hypophysitis
- Rare (< 5%)
- Pneumonitis
 - Grade 3/4 toxicities uncommon
 - Low grade reversible with steroids and discontinuation
- Anemia

Less Common Immune-Related Adverse Events

- <u>Hematologic</u> (hemolytic anemia, thrombocytopenia)
- <u>Cardiovascular</u> (myocarditis, pericarditis, vasculitis)
- <u>Ocular</u> (blepharitis, conjunctivitis, iritis, scleritis, uveitis)
- <u>Renal</u> (nephritis)
- Several case reports of rare autoimmune-based toxicities in pts treated with ipilimumab
 - Lupus nephritis
 - Inflammatory enteric neuropathy
 - Tolsosa-Hunt syndrome

- Myocardial fibrosis
- Acquired hemophilia A
- Autoimmune polymyositis

Adverse Events: Combined Therapy

Table 3. Adverse Events.*

Event	Nivolu (N=3	Nivolumab (N=313)		Nivolumab plus Ipilimumab (N=313)		Ipilimumab (N=311)	
	Any	Grade 3 or 4	Any	Grade 3 or 4	Any	Grade 3 or 4	
		nur	nber of patients w	ith event (percent)			
Any adverse event	311 (99.4)	136 (43.5)	312 (99.7)	215 (68.7)	308 (99.0)	173 (55.6)	
Treatment-related adverse event†	257 (82.1)	51 (16.3)	299 (95.5)	172 (55.0)	268 (86.2)	85 (27.3)	
Diarrhea	60 (19.2)	7 (2.2)	138 (44.1)	29 (9.3)	103 (33.1)	19 (6.1)	
Fatigue	107 (34.2)	4 (1.3)	110 (35.1)	13 (4.2)	87 (28.0)	3 (1.0)	
Pruritus	59 (18.8)	0	104 (33.2)	6 (1.9)	110 (35.4)	1 (0.3)	
Rash	81 (25.9)	2 (0.6)	126 (40.3)	15 (4.8)	102 (32.8)	6 (1.9)	
Nausea	41 (13.1)	0	81 (25.9)	7 (2.2)	50 (16.1)	2 (0.6)	
Pyrexia	18 (5.8)	0	58 (18.5)	2 (0.6)	21 (6.8)	1 (0.3)	
Decreased appetite	34 (10.9)	0	56 (17.9)	4 (1.3)	39 (12.5)	1 (0.3)	
Increase in alanine amino- transferase level	12 (3.8)	4 (1.3)	55 (17.6)	26 (8.3)	12 (3.9)	5 (1.6)	
Vomiting	20 (6.4)	1 (0.3)	48 (15.3)	8 (2.6)	23 (7.4)	1 (0.3)	
Increase in aspartate amino- transferase level	12 (3.8)	3 (1.0)	48 (15.3)	19 (6.1)	11 (3.5)	2 (0.6)	
Hypothyroidism	27 (8.6)	0	47 (15.0)	1 (0.3)	13 (4.2)	0	
Colitis	4 (1.3)	2 (0.6)	37 (11.8)	24 (7.7)	36 (11.6)	27 (8.7)	
Arthralgia	24 (7.7)	0	33 (10.5)	1 (0.3)	19 (6.1)	0	
Headache	23 (7.3)	0	32 (10.2)	1 (0.3)	24 (7.7)	1 (0.3)	
Dyspnea	14 (4.5)	1 (0.3)	32 (10.2)	2 (0.6)	13 (4.2)	0	
Treatment-related adverse event leading to discontinuation	24 (7.7)	16 (5.1)	114 (36.4)	92 (29.4)	46 (14.8)	41 (13.2)	

* The safety population included all the patients who received at least one dose of study drug. The severity of adverse events was graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.0.

† The treatment-related adverse events listed here were those reported in at least 10% of the patients in any of the three study groups.

Kinetics of Appearance of irAEs with Checkpoint Blockade

- Data from pts receiving anti–PD-1 antibodies q2w for ≥ 3 yrs show most irAEs occur by Wk 24 (6 mos)
- Toxicities with PD-1/PD-L1 agents may take longer to resolve than with ipilimumab, so long-term surveillance is recommended

Association of Vitiligo with Tumor Response in Patients with Metastatic Melanoma Treated with Pembrolizumab

Clinical Photographs of a Patient With Vitiligo Occurring During Pembrolizumab Treatment of MelanomaPatient's types of vitiligo. Arrowhead indicates hypomelanotic lesions developed around cutaneous metastases.

A Acrofacial vitiligo

B Vitiligo on the arm and hand

C Generalized vitiligo

A Vitiligo on scalp

JAMA Dermatol. 2016;152(1):45-51. doi:10.1001/jamadermatol.2015.2707

Occurrence of Psoriasiform Eruption During Nivolumab Therapy for Primary Oral Mucosal Melanoma

A red, partially blackish nodule is present on the upper lip. B, After nivolumab, the nodule on the lip is significantly smaller. C, Welldemarcated, scaly, erythematous plaques are observed on the arm; eruptions show unclear borders or crusts.

JAMA Dermatol. 2015;151(7):797-799. doi:10.1001/jamadermatol.2015. 0249

A Upper lip before nivolumab treatment

B Upper lip after fourth nivolumab cycle

C Arm after fourth nivolumab cycle

Ipilimumab-Induced Colitis Resembles IBD and Usually Resolves Without Sequelae With Appropriate Therapy

Robinson et al, 2004; Phan et al, 2003.

Ipilimumab-Related Pituitary Swelling and Dysfunction

6/30/04 Baseline (4.5 mm)

12/3/04 Headache/fatigue after 5 doses (10.8 mm)

Blansfield et al, 2005.

Management of Drug-Related AEs

 The majority of both nivolumab- and ipilimumab-related AEs to date have been reversible and manageable by delaying study drug ± administration of corticosteroids; other immunosuppressants (TNF inhibitors) may also be needed

The Problem

Management of Cancer in the Post Anti–PD-1/L1

Oncolytic Viruses

In situ vaccination effect of T-VEC, potentially converting a non–T-cell-inflamed tumor to a Tcell–inflamed tumor.

Patrick A. Ott, and F. Stephen Hodi Clin Cancer Res 2016;22:3127-3131

Local Response Anecdote

Male with cutaneous melanoma on the chest. Injection in chest lesions .

Histopathological analysis confirmed complete melanoma regression

Local Abscopal Effect Anecdote

Baseline

Day 85

Visceral Abscopal Response Anecdote

Male with metastatic melanoma to left neck and lungs. Injection in left neck.

Primary Analysis of Overall Survival (OS) in Intent-to-Treat Population

Robert H.I. Andtbacka et al. JCO 2015;33:2780-2788

Management of Cancer in the Post Anti–PD-1/L1

Adoptive Cell Transfer (ACT) Therapies

Presented By Jeffrey Weber at 2015 ASCO Annual Meeting

T cells, Transgenic T cells, and CARs

Immunity 2013 39, 49-60DOI: (10.1016/j.immuni.2013.07.002)

Presented By Jeffrey Weber at 2015 ASCO Annual Meeting

Adoptive Transfer of Tumor Infiltrating Lymphocytes (TIL)

Clinical Response of Patient 3713 After Treatment with Adoptive Cell Therapy

Post-**TIL therapy**

Todd D. Prickett et al. Cancer Immunol Res 2016;4:669-678

Survival of Patients with Metastatic Melanoma Treated with Autologous Tumor Infiltrating Lymphocytes and IL-2

EARLE A. CHILES RESEARCH INSTITUTE

Presented By Jeffrey Weber at 2015 ASCO Annual Meeting

T Cell Receptor Gene Transfer for the Immunotherapy of Cancer

Mucosal Melanoma of the Bladder – Response to Ipilimumab

Postow M A et al. The Oncologist 2013;18:726-732

Mucosal Melanoma: Changes in Tumor Burden for 30 Patients

Postow M A et al. The Oncologist 2013;18:726-732

Overall Survival of Mucosal Melanoma Cohort (n = 33)

Postow M A et al. The Oncologist 2013;18:726-732

Adjuvant Interferon Alpha

Foundation Trust

NHS

Only includes data from trials providing IPD

MANCHESTER

ASCO 2016

Recent Adjuvant Trials Results

Trial	No. pts	Experimental arm vs. obs	HR for disease recurrence	HR for OS
AVAST-M	1,343	Bevacizumab vs. observation	0.83 (p=0.03)	0.97 (p=0.76)
DERMA	1,388	MAGE A3 ASCI vs. placebo	All patients 1.013 (p=0.86) Gene signature +ve 1.11 (p=0.4821)	<i>All patients</i> 1.065 (p=0.52)
ECOG 4697	815	GMCSF vs placebo (HLA-A2 positive peptide vs. placebo)	p = 0.131, HR 0.88, 95% CI 0.74-1.04	p = 0.528 (HR 0.95, 95% CI 0.77-1.15)
EORTC 18071	951	Ipilimumab 10mg/kg vs. placebo	0.75 (p=0.0013)	Awaited

ASCO 2016

Presented By Paul Lorigan at 2016 ASCO Annual Meeting

Kaplan-Meier Estimates of Recurrence-free Survival (RFS), Overall Survival and Distant Metastasis-free Survival (DMFS).

Eggermont AM et al. N Engl J Med 2016. DOI: 10.1056/NEJMoa1611299

Forest Plot for Overall Survival

Subgroup	Ipilimumab	Placebo	Hazard Ratio (95% or	r 99% CI)	P Value	
	no. of deat	hs/total no.				
All patients	162/475	214/476	+	0.72 (0.59-0.88)	0.001	
Disease stage	2				0.07	
IIIA	24/98	22/88	· · · · · · · · · · · · · · · · · · ·	0.98 (0.46-2.09)		
IIIB	68/213	85/207		0.75 (0.50-1.14)		
IIIC with 1-3 positive lymph nodes	34/69	45/83		1.00 (0.56-1.80)		
IIIC with ≥4 positive lymph nodes	36/95	62/98		0.48 (0.28-0.81)		
No. of positive lymph nodes			1		0.09	
1	65/217	82/220		0.79 (0.52-1.21)		
2 or 3	61/163	70/158		0.83 (0.53-1.30)		
≥4	36/95	62/98		0.48 (0.28-0.81)		
Type of positive lymph node			1		0.21	
Microscopic	54/210	76/193		0.61 (0.39-0.96)		
Macroscopic	108/265	138/283		0.80 (0.58-1.11)		
Ulceration			1		0.29	
Yes	73/197	110/203		0.64 (0.44-0.94)		
No	79/257	88/244		0.80 (0.54-1.20)		
Lymph-node and ulceration status			1		0.35	
Microscopic and ulceration	28/99	43/88		0.54 (0.29-0.99)		
Macroscopic and ulceration	45/98	67/115		0.76 (0.46-1.23)		
Microscopic and no ulceration	21/104	29/97		0.62 (0.30-1.29)		
Macroscopic and no ulceration	58/153	59/147		0.90 (0.56-1.45)		
			0.25 0.5 1.0 2.0	4.0		
			<u></u>	→		
			Ipilimumab Placebo Better Better			

Eggermont AM et al. N Engl J Med 2016. DOI: 10.1056/NEJMoa1611299

Current Intergroup Adjuvant Study for Melanoma

 (SWOG 1404) A Phase III Randomized Trial Comparing Physican/Patient Choice of Either High Dose Interferon or Ipilimumab 10mg/kg to Pembrolizumab 200mg q3w in Patients with High Risk Resected Melanoma

Description:

 To compare overall survival (OS) of patients with resected Stage III and IV melanoma treated with physician/patient choice of either high dose interferon alfa-2b or ipilimumab versus MK-3475 (pembrolizumab).

Strategies for Personalized Precision Immunotherapy

AAGR American Association

CANCER DISCOVERY

THANK YOU

