Mechanisms and Biomarkers of CD8 T Cell Exhaustion

SITC2014

E. John Wherry
Institute for Immunology
Department of Microbiology
University of Pennsylvania
Philadelphia, PA

Disclosures: Genentech/Roche (Patent Licensing Agreement); Surface Oncology (SAB). Merck, Janssen/J&J, Ono, BMS (Sponsored research and/or consulting).

T cell exhaustion

Exhaustion is common in infections and cancer in mice as well as humans

Molecular Basis of CD8 T Cell Exhaustion: Mouse studies lead to clinical trials

1) Subsets of exhausted T cells

- 2) Exhaustion without PD-1
- 3) Immune biomarker of reversal of T cell exhaustion

Subsets of exhausted CD8 T cells during chronic infection

Maintenance of CD8 T cells during chronic infection

Eomes

- PD-1^{Int}
- Better cytokine producers (slightly)
- Retain some proliferative capacity
- "Centrally" located
- Depleted by prolonged infection
- Respond to PD-1 blockade

- PD-1^{Hi} + other IR
- Better cytotoxicity
- Terminally differentiated
- Short half-life
- Peripheral localization
- Non-reversible

Blackburn et al *PNAS* 2008 Paley et al *Science* 2012

How does PD-1 regulate subsets of exhausted CD8 T cells?

Does PD-1 <u>cause</u> exhaustion?

Can T cell exhaustion occur without PD-

PD-1 KO P14 cells Outnumber WT P14 cells during Chronic Viral Infection

PD-1 KO P14 cells Have Altered Expression of Tbet and Eomes during Chronic Infection

Greater attrition of exhausted CD8 T cells in the genetic absence of PD-1

Enhanced cytotoxicity and peripheral tissue localization without PD-1

Cytotoxicity

Tissue localization

***Similar results with PD-1 pathway blockade

 Loss of PD-1 → initial proliferative benefit, but cells rapidly skew towards terminal exhaustion

 Removing PD-1 fosters the Eomes^{Hi} subset with enhanced tissue distribution and killing

 How to use this information to inform human checkpoint blockade therapy?

Eomes^{Hi}PD-1^{Hi} subset

Eomes is normally associated with functional Central Memory T cells

Banerjee, JI 2010 Paley, JLB 2012 Zhou, Immunity 2010

Can Eomes^{Hi}PD-1^{Hi} cells be used as a surrogate of changes in exhausted T cells?

T-bet and Eomes Expression in Human Tumor Tissue

Potentially exhausted T cells

Can Eomes^{Hi}PD-1^{Hi} cells be used as a surrogate of changes in exhausted T cells?

LCMV clone 13 after 2 weeks of aPD-L1 Spleen Gated on CD8+

A model for testing Eomes^{Hi}PD-1^{Hi} cells as a surrogate for immunotherapy

- Effect on unirradiated tumor
- Combination of Rad + anti IRs "RadVax"
- Immune parameters
- Reversal of Exhaustion signatures

Twyman-Saint Victor, Rech, Pauken, Minn, Vonderheide

A model for testing Eomes^{Hi}PD-1^{Hi} cells as a surrogate for immunotherapy

Sensitive or resistant tumors

B16

- Immune parameters
- Reversal of Exhaustion signatures
- Are Eomes+PD-1+ cells a surrogate of response to immunotherapy

What about humans?

19 patients treated with "RadVax" 4 PR, 2 SD

What about humans?

Changes in PD-1, T-bet and Eomes accompany subset conversion during chronic infection

Key Points

- T cell exhaustion is clinically relevant
- Mouse models have been key to dissecting exhaustion
- Inhibitory receptors play a key role and are important therapeutic targets, but exhaustion can occur without PD-1
- T-bet and Eomes control a proliferative hierarchy in exhausted T cells → dissecting the mechanisms informs human clinical trials
- Changes in Eomes^{Hi}PD-1^{Hi} exhausted cells correlate with response to immunotherapy → T-bet^{Hi} progenitors may be the underlying mechanism

Acknowledgements

Wherry lab

Mohammed Ali

John Attanasio

Bertram Bengsch

Shawn Blackburn

Travis Doering

Sarah Henrickson

Ramin Herati

Alex Huang

Jonathan Johnnidis

Makoto Kurachi

Pam Odorizzi

Michael Paley

Olesya Palko

Kristen Pauken

Erietta Stelekati

Vesko Tomov

Laura Vella

UPenn

Andy Minn

Christina Twyman

Bob Vonderheide

Andrew Rech

Steve Hahn

Amit Maity

Lynn Schuchter

Tara Gangadhar

Mike Feldman

George Xu

Steve Albelda

Evgeniy Eruslanov

Sunil Singhal

Gwenn Danet-Desnoyers

Other Collaborators

Steven Reiner

Arlene Sharpe

Gordon Freeman

Nick Haining

Tony Barnitz

Supported by NIH/NIAID:

AI071309; AI078897; AI105343

U19 Al083022; U19 Al082639

Dep. of Radiation Oncology;

Cancer Research Institute

Institute for Immunology₂₄

T cell exhaustion

Moskophidis D, *Nature* 1993; Gallimore A, *J Exp Med* 1998; Zajac AJ, *J Exp Med* 1998; Lee P. *Nat Med* 1999; *Lechner* F. *J Exp Med* 2000; Wherry EJ, *J Virol* 2003; Fuller MJ, *J Immunol* 2004; Barber DL *Nature* 2006; Day CL. *Nature* 2006; Wherry EJ *Immunity* 2007; Blackburn SD *Nat Immunol* 2009; Nakamoto N. *PLoS Pathog* 2009; Wherry EJ *Nat Immunol* 2011