Society for Immunotherapy of Cancer (SITC)

Immunotherapy for Treatment of Hematologic Malignancies

Xue-Zhong Yu, M.D., M.S.

Member, Cancer Immunology Program

Hollings Cancer Center

Medical University of South Carolina (MUSC)

Disclosure

Bone Marrow Transplantation (BMT) Hematopoietic Stem Cell Transplantation (HSCT)

Applications

Hematological disorders

Hematological malignances

Solid tumors

Complications

Graft-versus-host diseases
Tumor relapse
Infection
Graft rejection

Separating GVHD and GVL effects

The Allogeneic Transplant Process

Stem cells are collected from the patients bone marrow or blood. 2 Processing

Bone marrow or periferal blood is taken to the processing laboratory where the stem cells are concentrated and prepared for the freezing process

5 Infusion

Thawed stem cells are infused into the patient.

4 Chemotherapy

High dose chemotherapy and/or radiation therapy is given to the patient. 3 Cryopreservation

Bone marrow or blood is preserved by freezing (cryopreservation) to keep stem cells alive until they are infused into the patient's bloodstream.

Annual Number of Transplant Recipients in the US by Transplant Type

Indications for Hematopoietic Stem Cell Transplants in the US, 2012

Causes of Death after Autologous Transplants done in 2010-2011

Causes of Death after Unrelated Donor Transplants done in 2010-2011

Billingham's GVHD Criteria

- Genetic disparity between donor and host
- Immune deficiency
- Immune cells present in donor graft

Priming of the immune response

Socie and Blazar: 2009, BLOOD

T-cell activation and costimulation

Step 2: T-cell activation and co-stimulation

- -MiH antigenic disparities that cause acute GVHD have been identified
- Host APCs proven to initiate GVHD
- Critical role of positive and inhibitory co-stimulatory molecules proven

- HLA antigen disparities that cause acute GVHD have been identified. Only a few MiHa antigens that cause GVHD have been identified.
- Host APCs in GVHD not well studied to date
- Role of positive and inhibitory co-stimulatory molecules expression in vivo not well studied

Issues

Reagents tested in mice or large animals may have different functional effects due to distinct species-specific expression patterns or targeted epitopes (e.g. cytokine syndrome see with anti-CD28 Ab in humans but not large or small animals)

Regulation of acute GVHD by T-cell subsets

- Influence of distinct memory cell repertoire differences between species as a result of specific environmental, pathogen or antigenic exposure that results in different proportions of non-alloreactive vs alloreactive memory T-cells - Role of differential expression of antigens on activated or suppressor T-cells (e.g. HLA-DR expression CD4+ T cells and CD28 expression on CD8+ suppressor T-cells in humans vs. mice)

T-cell trafficking

Step 4: T-cell trafficking

- -Secondary lymphoid organs facilitate GVHD initiation.
- -Parenchymal organs amplify GVHD
- Homing mechanisms (chemokine, selectin and adhesion molecules) well established

Issue

Chemokine/receptor redundancy hinder clinical applications

- -GVHD initiation and amplification sites not well established
- Homing mechanisms (chemokines, selectin, adhesion molecules) not well established

Effector Phase

Pathophysiological findings in animal models may not be readily extrapolated to humans as a result of differences in graft constituency, migratory properties, or regulatory mechanisms

Therapeutic Approaches for GVHD

Cellular Immunotherapies in GVHD

Separating GVHD and GVL effects

Tissue-specific mHAgs may separate GVL and GVHD

Riddell SR et al: Cancer Control, 2002

Human mHAgs

Minor	HLA	Gene/chromosome	Peptide	Tissue	Identification technique	References
histocompatibility antigen	restriction	denezonioniosonie	sequence	distribution	identification technique	Helerences
HA-1	HLA A201	KIAA0223/19p13	VLHDDLLEA	Haematopoietic	HPLC with mass spectometry	25
HA-1	HLA B60	KIAA0223/19p13	KECVLHDDL	Haematopoietic	Polymorphic-peptide screening	26
HA-2	HLA A201	MYOG1/7	YIGEVLSV	Haematopoietic	HPLC with mass spectometry	27,28
HA-3	HLA A1	LBC/15q24-25	VTEPGTAQY	Ubiquitous	HPLC with mass spectometry	29
HA-8	HLA A201	KIAA0020/9	RTLDKVLEV	Ubiquitous	HPLC with mass spectometry	30
HB-1	HLA B44	5q32	EEKRGSLHVW	Haematopoietic, especially B-cell leukaemias	cDNA-expression cloning	31,32
UGT2B17	HLA 2902	UGT2B17/4q13	AELLNIPFLY	Ubiquitous	cDNA expression cloning	33
BCL2A1	HLA A24	BCL2A1/15q24.3	DYLQYVKQI	Haematopoietic	Genetic-linkage analysis	34
BCL2A1	HLA B4403	BCL2A1/15q24.3	KEFEDDIINW	Haematopoietic	Genetic-linkage analysis	34
HY B7	HLA B702	SMCY	SPSVDKARAEL	Ubiquitous	HPLC with mass spectometry	35
HY A2	HLA A201	SMCY	FIDSYICQV	Ubiquitous	HPLC with mass spectometry	36
HY A1	HLA A101	DFFRY	IVDCLTEMY	Ubiquitous	HPLC with mass spectometry	37
HY B60	HLA B60	UTY	RESEESVSL	Ubiquitous	cDNA-expression cloning	38
HY B8	HLA B8	UTY	LPHNHTDL	Ubiquitous	cDNA-expression cloning	39
HY DQ5	HLA DQ5	DBY	HIENFSDIDMGE	Ubiquitous	cDNA-expression cloning	40
HY DRB3	HLA DRB3	RPS4Y	VIKVNDTVQI	Not reported	cDNA-expression cloning	41

HLA, human leukocyte antigen; HPLC, high-performance liquid chromatography.

Bleakley & Riddell: 2004

HY-directed responses

Table 8. Effect of donor/recipient sex on death

Donor/recipient sex	Adjusted hazard ratio*	95% CI	P
Female/male	1	NA	NA
Male/female	0.82	0.72-0.94	.004
Female/female	0.81	0.72-0.92	.002
Male/male	0.87	0.78-0.97	.01

NA indicates not applicable.

*Adjusted for patient and donor age, GVHD prophylaxis, disease status, conditioning regimen, and patient/donor CMV serostatus.

Randolph SB et al: Blood, 2004

Leukemia Associated Antigens

Leukemia antigens							
Class	Example(s)	Pros	Cons				
Tumor-associated antigens (TAAs)	WT-1 [25], hTERT [26], PRAME [27], HMMR/Rhamm [28]	- multiple candidates identified- often shared by > 1 malignancy	- present on normal tissue	- self antigens that generate low-avidity T-cells- must be			
Tumor differentiation antigens	PR1 [29], CG1 [30], CD33 [31]	- more restricted distribution than TAAs	 present on subset of normal cells, which can include hematopoietic stem cells 	successfully processed and presented by the MHC of the malignant cell			
Cancer testis (CT) antigens	Cyclin-A1 [32], NY-ESO-1 [33] , MAGE [34]	 frequently restricted to non-essential tissues and tumor 	- few identified in leukemia				
Minor histocompatibility antigens (mHAs)	HA-1 [35], ACC1 [36], T4A [37], LB-LY75-IK [38]	 result in high avidity allo T-cells since epitopes are foreign to donor- some are largely restricted to hematopoietic compartment 	 Necessitate rescue with mHA-negative stem cells to restore normal hematopoiesis- need for allogeneic TCRs 	- must be successfully processed and presented by the MHC			
Tumor-specific antigens (neoantigens)	BCR-ABL [39], FLT3-ITD [40], B-cell receptor idiotype [41]	- result in high avidity autologous T-cells- many derive from proteins critical in leukomogenesis	 individual-specific- few identified in leukemia since mutation rate is low 				
Oncoviral antigens	HTLV-I Tax protein [42]	- generate very high-avidity T-cells	 only relevant to virus-initiated malignancies 				
Extracellular antigens	CD19 (see CD19 section), Lewis Y [43], CD22 [44], ROR1 [45]	-MHC-independent- interaction with CAR is high-affinity	- many are present on normal tissues	 require CAR for targeting, which can mediate on-target, off-tumor adverse effects 			

Garber HR et al: Mol & Cell Therapies, 2014:2:25

Tumor-associated Antigen-targeting Therapies

Garber HR et al: Mol & Cell Therapies, 2014:2:25

Myeloablation and HSC Enhance Immunotherapy

Anasetti & Mule: J Clin Invest, 2007

Research in Yu's Lab

- Control T-cell differentiation
- Modify T-cell costimulation
- Target kinases for T- and B-cell activation
- Adoptive T-cell therapy: effector and regulatory
- Combinational therapy with HSC and T cells for solid tumor, such as melanoma

Take Home Messages

- HSCT is a classic cancer immunotherapy through GVL effect
- GVHD is a major complication
- Separating GVH and GVL response is a major challenge
- Anti-tumor effect can be enhanced by targeting mHAg or TAA
- Combinational therapy with HSC and T cells increases the efficacy of immunotherapy

Questions

- 1. Hematopoietic stem cell transplantation (HSCT) is a therapeutic procedure. What is the major application of HSCT?
- A. Genetic or congenital defects
- B. Hematological disorders
- C. Hematological malignances
- D. Solid tumors

Questions

- 2. It is a major challenge to suppress GVHD while preserving GVT effect after allogeneic HSCT. Targeting what antigen(s) is promoting GVT effect while limiting GVHD?
- A. MHC antigens
- B. Minor histocompatibility antigens (miHA)
- C. Tumor associated antigens (TAA)
- D. miHA and TAA

Questions

- 3. How does HSCT enhance adoptive T-cell immunotherapy against cancer?
- A. Myeloablative conditioning depletes inhibitory cells, such as Tregs, NKT, and suppressive monocytes
- B. Enhances cytokine availability due to removing cytokine sink
- C. HSC produces APCs and T-cell homeostatic cytokines (e.g. IL-7 and IL-15)
- D. All of above

Adoptive Immunotherapy with donor T cells

Garber HR et al: Mol & Cell Therapies 2014:2:25

T cell/APC Interaction and Intervention

Blazar BR et al: 2012, Nat Rev Immunol

Nature Reviews | Immunology

T cell Approaches to Target Leukemia Antigens

Garber HR et al: Mol & Cell Therapies 2014:2:25

Stem Cell Sources for Allogeneic Transplants by Year

