Basic Principles of Tumor Immunotherapy

Michael A. Curran, Ph.D.

Disclosures

• AstraZeneca, Threshold, Infinity - Consultant

Why does the immune system fail to eliminate cancer?

Antigenic Cancer Cells Grow Progressively in Immune Hosts without Evidence for T Cell Exhaustion or Systemic Anergy

By Maresa Wick,* Purnima Dubey,* Hartmut Koeppen,* Christopher T. Siegel,[‡] Patrick E. Fields,[§] Lieping Chen,[∥] Jeffrey A. Bluestone,[§] and Hans Schreiber*

J. Exp. Med. © The Rockefeller University Press Volume 186, Number 2, July 21, 1997 229–238

Like pathogens, tumors deploy multigenic immune evasion programs

With < 9.8 kB of genome space HIV, like many other viruses devotes a large percentage of its genome to immune evasion.

Can access the entire $3x10^9$ base genome for evolutionary as well as adaptive immune evasion.

Multi-layered immuno-suppression

To exist, tumors must evolve mechanisms to locally disable and/or evade the immune system.

The goal of immunotherapy, then, is to restore the capacity of the immune system to recognize and reject cancer.

Types of Immunotherapy

T Cell Checkpoint Modulation

Therapeutic Cancer Vaccines

T Cell Adoptive Transfer

Effector antibodies and ADCs

Order matters...

Therapeutic Cancer Vaccines

Prior to the discovery that CTLA-4 blockade could cure murine tumors, the field focused on finding tumor antigens and vaccination.

Unfortunately, vaccineinduced T cells were powerless to overcome local tumor immune suppression prior to the discovery of checkpoint blockade.

T cell Checkpoint Modulation

Ai M., **Curran M.** Immune checkpoint combinations from mouse to man. *Cancer Immunology Immunotherapy*, 2015.

T cells are activated in two steps: T cell receptor ligation and co-stimulation

CTLA-4, a negative regulator of T cell activity, limits the lifespan of activated T-cells

Anti-CTLA-4 Induces Regression of Transplantable Colon Carcinoma

Enhancement of antitumor immunity by CTLA-4 blockade. Leach DR¹, Krummel MF, Allison JP.

Ipilimumab (anti-human CTLA-4) was approved for the treatment of metastatic melanoma by the FDA in 2010

Wolchok et al, Lancet Oncol, 2010

Which T-cells are affected by Ipilimumab(αCTLA-4)?

The greater the percentage of active T-cells in a patient targeting the tumor when α CTLA-4 is initiated, the greater the efficacy and selectivity should be.

Immune checkpoint modulating antibodies currently in the clinic

Table 1: T cell immune checkpoint modulating antibodies in the clinic

Target Molecule	Drug	Company	Development Stage
CTLA-4	Ipilimumab	Bristol-Myers Squibb	FDA Approved
	Tremelimumab	Medimmune/Astrazeneca	Phase III Trial
PD-1	Pembrolizumab	Merck	FDA Approved
	Nivolumab	Bristol-Myers Squibb	FDA Approval Pending
	AMP-514/MEDI0680	Medimmune/Astrazeneca	Phase I Trial
PD-L1	MPDL3280A	Genentech/Roche	Phase III Trial
	MEDI4736	Medimmune/Astrazeneca	Phase III Trial
	MSB0010718C	EMD Serono	Phase II Trial
	BMS-936559	Bristol-Myers Squibb	Phase I Trial
4-1BB	Urelumab	Bristol-Myers Squibb	Phase I Trial
	PF-05082566	Pfizer	Phase I Trial
OX-40	MEDI6469	Medimmune/Astrazeneca	Phase I Trial
	MEDI6383 (rOX40L)	Medimmune/Astrazeneca	Phase I Trial
	MOXR0916	Genentech/Roche	Phase I Trial
GITR	TRX518	Tolerx	Phase I Trial
CD27	CDX-1127	Celldex	Phase I Trial
CD40	CP-870,893	Genentech/Roche Phase I Trial	
LAG3	BMS-986016	Bristol-Myers Squibb	Phase I Trial

To exist, tumors must evolve mechanisms to locally disable and/or evade the immune system.

The goal of T cell checkpoint blockade is block the switches on T cells being engaged by the tumor to shut them down and in so doing to restore tumorspecific immunity.

Therapeutic Cancer Vaccines

Attenuated Bacteria

Nasal Spray

Systemic Infusion

Dendritic Cells

Injection Gene Gun

Viral Vectors

Vector

The first therapeutic cancer vaccine approved for human use was Provenge for prostate cancer in 2010.

Many others are in Phase III development as shown here and dozens more are currently in Phase I and Phase II.

The momentum in the field is moving toward targeting the mutated epitopes unique to each patient's cancer which are the targets for the most efficacious anti-tumor responses.

Table 1 Active immunotherapies in phase III development*						
Immunotherapy	Targeted antigens	Adjuvants/ immune modulators	Study population	n	Outcomes	References
Prostate cancer						
Autologous cell vaccine: sipuleucel-T, Provenge®	PAP	GM-CSF	Metastatic, castration- resistant prostate cancer	512	OS: 25.8 months vs 21.7 months (HR 0.78; P =0.03) PFS: 3.7 months vs 3.6 months (HR 0.95; P =0.63) T-cell response in 73.0% vs 12.1% of patients	50-55
Allogeneic tumour cell vaccine: GVAX	Tumour cell	GM-CSF	Castration- resistant prostate cancer	626	OS: 20.7 months vs 21.7 months with docetaxel plus prednisone (HR 1.03; $\rho{=}0.78)^{\text{p}}$	70, 194
Allogeneic tumour cell vaccine: GVAX	Tumour cell	GM-CSF	Castration- resistant prostate cancer	408	OS: 12.2 months in combination with docetaxel vs 14.1 months docetaxel plus prednisone (HR 1.70; $P=0.0076)^{6}$	71, 195
Breast cancer						
Peptide vaccine: Theratope	Sialyl-Tn	KLH	Metastatic breast cancer, in remission after first-line chemotherapy	1,028	Median OS: 23.1 months vs 22.3 months (P =0.916) With concomitant endocrine therapy, OS: 39.6 months vs 25.4 months (P =0.005) Median TTP: 3.4 months vs 3.0 months (P =0.353) With concomitant endocrine therapy: 10.6 months vs 6.3 months (P =0.078)	76, 77
Lung cancer						
Peptide vaccine: tecemotide (L-BLP25)	MUC1	Liposomal monophosphoryl lipid A plus cyclophosphamide	Unresectable stage III NSCLC; after chemo- radiotherapy	1,239	Median OS: 25.6 months vs 22.3 months (HR 0.88; P = 0.123); OS with concurrent chemotherapy: 30.8 months vs 20.6 months (HR 0.78; $P = 0.016$); OS with sequential chemotherapy: 19.4 months vs 24.6 months (HR 1.12; $P = 0.38$)	79–81, 197
Peptide vaccine: GSK1572932A	MAGE-A3	Liposomal AS15	Completely resected stage IB–II NSCLC	182	Trial terminated owing to failure to meet primary end points of extended DFS. Not possible to identify gene signature predicting benefit	85, 86
Allogeneic tumour cell vaccine: belagenpumatuceI-L, Lucanix™	Tumour cell	Anti-TGF-β	Stage IIIB-IV NSCLC	532	Median OS: 20.3 months vs 17 months (HR 0.94; P=0.594) Non-adenocarcinoma: 19.9 months vs 12.3 months (HR 0.55; $P=0.036$)	93, 198
Melanoma						
Peptide vaccine	gp100	IL2 plus Montanide™ ISA51	Locally-advanced stage III or stage IV melanoma	185	OS: 17.8 months vs 11.1 months (P =0.06) PFS: 2.2 months vs 1.6 months (P =0.08) T-cell responses in 7 of 37 (19%) patients Higher levels of CD4*foxp3* cells in patients with clinical response (P =0.01)	35, 198
Peptide vaccine: GSK 2132231A	MAGE-A3	QS-21	Resected melanoma	1,349	Failed to meet primary end point of DFS; ongoing for end point of DFS in patients with predictive gene signature	100
Pancreatic cancer						
Peptide vaccine: GV1001	Telomerase	GM-CSF	Locally-advanced and/or metastatic pancreatic cancer	1,062	OS: 8.4 months (concurrent with chemotherapy) and 6.9 months (sequential chemotherapy) vs 7.9 months with chemotherapy alone (NS)	113, 199, 200
Colorectal cancer						
Autologous tumour cell vaccine: OncoVAX®	Tumour cell	BCG	Resected stage II–III colon cancer; after resection	254	42% reduction in the risk of recurrence and/or death (P =0.032); greatest effect in stage II disease with 60% reduction in risk of recurrence and/or death (P =0.007) and 54% reduction in risk of death	121
Haematological malignancies						
Autologous anti-idiotype vaccine	ldiotype	KLH	Advanced follicular lymphoma, with complete response after chemotherapy	177	PFS: 23.0 months vs 20.6 months (P =0.256) ≥1 blinded vaccination: 44.2 months vs 30.6 months (P =0.047)	130, 201

Finding a broadly-relevant "off the shelf" tumor antigen is difficult and the outcomes often sub-optimal

PMC full text: <u>J Natl Cancer Inst. Apr 18, 2012; 104(8); 599–613.</u> Published online Mar 6, 2012. doi: <u>10.1093/jnci/djs033</u> <u>Copyright/License</u> <u>Request permission to reuse</u>

Table 2

Spectrum of current and potential therapeutic cancer vaccine targets-

Target type		Examples	Selected references
Oncoprotein	point mutated: ras, B-raf, fram p53	ne shift mutations, undefined unique tumor mutations; HER2/neu, MUC-1 C-terminus,	(<u>1,7,8,48,49</u>)
Oncofetal antigen	CEA, MUC-1	The HPV E6/E7 oncoproteins are id	leal targets
Cancer-testes	MAGE-A3, BAGE SERE	for therapeutic vaccination as: 1)	they are
Tissue lineage	PAP, PSA, gp100, tyrosinas		
Stem cell/EMT	Brachyury SOX-2, OCT-4,	immunologically foreign to the nost	; 2) they are
Viral	HPV, KOV	necessary to maintain the transfor	med state
Glycopeptides	STn-KLH		(13,10)
Antiangiogenic	VEGF-R		(<u>65,66,67</u>)
B-cell lymphoma	Anti-id		<u>(11–14</u>)

^{*}BAGE = B melanoma antigen; CEA = carcinoembryonic antigen; EMT = epithelial-mesenchymal transition; gp100 = glycoprotein 100; HCV = hepatitis C virus; HPV = human papillomavirus; MAGE-A3 = melanoma-associated antigen-A3; MUC-1 = mucin 1; NY-ESO = New York esophageal carcinoma antigen 1; OCT-4 = octamer-binding transcription factor 4; PAP = prostatic acid phosphatase; PSA = prostate-specific antigen; SOX-2 = (sex determining region Y)-box-2; STn-KLH = sialyl-Tn-keyhole limpet hemocyanin; TERT = telomerase reverse transcriptase; VEGF-R = vascular endothelial growth factor receptor.

An intra-nasal HPV E6/E7 : α-GalCer vaccine slows growth of TC-1 tumors

Shailbala Singh

4-1BB agonist antibody and HPV E6/E7 vaccine synergize in curing TC-1 tumors

Todd Bartkowiak, M.S.

Intratumoral injection of innate immune agonists – the direct vaccination approach

Table 1 Nucleic acid-sensing PRRs: localization, sensed pathogens and agonists						
PRR	Localization	Sensed pathogens	Natural agonists	Synthetic agonists		
TLR3	Endolysosomal compartment	dsRNA viruses, ssRNA viruses, dsDNA viruses	dsRNA	PolyI:C, polyU		
TLR7	Endolysosomal compartment	ssRNA viruses, bacteria, fungi, protozoan parasites	GU-rich ssRNA	lmidazoquinolines (R848, imiquimod, 3M001), guanosine analogues		
TLR8	Endolysosomal compartment	ssRNA viruses, bacteria, fungi, protozoan parasites	GU-rich ssRNA	lmidazoquinolines (R848, 3M002), guanosine analogues		
TLR9	Endolysosomal compartment	dsDNA viruses, bacteria, protozoan parasites	DNA	CpG ODNs		
RIG-I	Cytoplasm	ssRNA viruses, DNA viruses, <i>Flaviviridae</i> , reovirus, bacteria	Short RNA with 5′ppp and/or base pairing	Short polyl:C		
MDA5	Cytoplasm	Picornaviridae, vaccinia virus, Flaviviridae, reovirus, bacteria	Long dsRNA	PolyI:C		
NOD2	Cytoplasm	RNA viruses	ssRNA	-		
DDX3	Cytoplasm	RNA viruses	RNA	-		
DDX1-DDX21-DHX36	Cytoplasm	RNA viruses	dsRNA	PolyI:C		
DDX60	Cytoplasm	RNA viruses, DNA viruses	ssRNA, dsRNA, dsDNA	-		
DHX9	Cytoplasm	DNA viruses, RNA viruses	dsDNA, dsRNA	CpG-B ODNs		
DHX36	Cytoplasm	DNA viruses	dsDNA	CpG-A ODNs		
DDX41	Cytoplasm	DNA viruses, bacteria	DNA	-		
AIM2	Cytoplasm	DNA viruses, bacteria	DNA	-		
IFI16	Cytoplasm and nucleus	DNA viruses	dsDNA	-		
ZBP1	Cytoplasm	DNA viruses, bacteria	dsDNA	-		
LRRFIP1	Cytoplasm	DNA viruses, bacteria	dsDNA, dsRNA	-		
STING	Cytoplasm	Bacteria	Cyclic di-GMP	-		

5'ppp. 5' triphosphate end; AIM2, absent in melanoma 2; dsRNA, double-stranded RNA; IFI16, IFNγ-inducible protein 16; LRRFIP1, leucine-rich repeat flightless-interacting protein 1; MDA5, melanoma differentiation-associated protein 5; NOD2, nucleotide-binding oligomerization domain protein 2; ODN, oligodeoxynucleotide; polyl:C, polyinosinic-polycytidylic acid; PRR, pattern-recognition receptor; RIG-I, retinoic acid-inducible gene I; ssRNA, single-stranded RNA; STING, stimulator of IFN genes; TLR, Toll-like receptor; ZBP1, Z-DNA-binding protein 1.

Intratumoral DMXAA (mouse STING agonist) triggers rejection of B16 melanoma

Current question: Can local injection of one lesion evoke rejection of distant ones. This is known as the **Abscopal Effect**. To exist, tumors must evolve mechanisms to locally disable and/or evade the immune system.

The goal of therapeutic cancer vaccination is to increase the immunogenicity of tumor antigens which are poorly presented by the tumor in order to generate a high frequency of tumor-specific T cells.

T cell adoptive transfer

CARs, TIL, engineered PBMC etc...

Adoptive T cell therapy can involve engineered (CAR, TCR) or patient derived (TIL, PBMC) T cells

Citation: C. H. June, S. R. Riddell, T. N. Schumacher, Adoptive cellular therapy: A race to the finish line. *Sci. Transl. Med.* **7**, 280ps7 (2015).

Effective treatment of relapsed B cell ALL with CD19 CAR T cell therapy

To exist, tumors must evolve mechanisms to locally disable and/or evade the immune system.

The goal of T cell adoptive transfer is to win the numbers game and overwhelm the tumor with a higher frequency of tumor-specific T cells than it is capable of suppressing.

Effector Antibodies and ADCs

Key ADC / Antibody principles

- Specificity: the more tumor specific the target antigen is the higher the agent can be dosed without limiting toxicity
- Internalization: the target tumor surface protein must internalize to deliver the toxin – it should do so frequently and to a suitable endosomal compartment.
- Stability: the toxin must remain inert and tethered to the antibody until it is delivered to its target cell.

SGN-70A in the clinic for NHL and RCC

Bioconjug Chem. 2013 Jul 17;24(7):1256-63. doi: 10.1021/bc400217g. Epub 2013 Jun 28.

A potent anti-CD70 antibody-drug conjugate combining a dimeric pyrrolobenzodiazepine drug with site-specific conjugation technology.

Jeffrey SC¹, Burke PJ, Lyon RP, Meyer DW, Sussman D, Anderson M, Hunter JH, Leiske CI, Miyamoto JB, Nicholas ND, Okeley NM, Sanderson RJ, Stone IJ, Zeng W, Gregson SJ, Masterson L, Tiberghien AC, Howard PW, Thurston DE, Law CL, Senter PD.

Figure 2. Conjugation process for the 239C antibody format. The engineered antibody, expressed in CHO cells, was isolated as the cysteine disulfide at position 239. The antibody was fully reduced with TCEP and partially reoxidized with dehydroascorbic acid. The resulting free cysteines at position 239 were conjugated to the PBD-linker to give the PBD ADC with nominally 2 drugs/mAb.

To exist, tumors must evolve mechanisms to locally disable and/or evade the immune system.

The goal of effector antibodies is to utilize the exquisite sensitivity of antibodies to specifically target and kill tumor cells using mechanisms which are difficult to evade or suppress.

Seeking combinations outside of T cell checkpoint immunotherapy

A different perspective on chemotherapy: immunogenic vs. non-immunogenic cell death

Trends in Molecular Medicine September 2013, Vol. 19, No. 9

Nature Reviews Drug Discovery 11, 215-233 (March 2012)

Radiation therapy : a potent adjuvant for tumor immunity

Anna R. Kwilas¹, Renee N. Donahue¹, Michael B. Bernstein² and James W. Hodge^{1*}

treatment of cancer

Radiotherapy synergizes with blockade of CTLA-4 and PD-1 to cure melanoma lung metastases

Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer

Christina Twyman-Saint Victor, Andrew J. Rech, Amit Maity, Ramesh Rengan, Kristen E. Pauken, Erietta Stelekati, Joseph L. Benci, Bihui Xu, Hannah Dada, Pamela M. Odorizzi, Ramin S. Herati, Kathleen D. Mansfield, Dana Patsch, Ravi K. Amaravadi, Lynn M. Schuchter, Hemant Ishwaran, Rosemarie Mick, Daniel A. Pryma, Xiaowei Xu, Michael D. Feldman, Tara C. Gangadhar, Stephen M. Hahn, E. John Wherry, Robert H. Vonderheide & Andy J. Minn

Nature 520, 373-377 (16 April 2015) | doi:10.1038/nature14292

More consistent benefit for a larger percentage of patients with a wide range of cancer types

