Cytokines: Interferons, Interleukins and Beyond

Amy Weise, DO

Karmanos Cancer Institute

Advances in Cancer Immunotherapy™ - Michigan July 31, 2015

Presentation originally prepared and presented by
Brendan D. Curti, MD
Earle A. Chiles Research Institute, Providence Cancer Center

Disclosures

No relevant financial relationships to disclose

Implementation of an Interleukin-2 National Registry: an opportunity to improve cancer outcomes

Michael K Wong^{1*}, Howard L Kaufman^{2*}, Gregory A Daniels³, David F McDermott⁴, Sandra Aung⁵, James N Lowder⁵ and Michael A Morse⁶

Durable responses and reversible toxicity of high-dose interleukin-2 treatment of melanoma and renal cancer in a Community Hospital Biotherapy Program

Roxanne Payne¹, Lyn Glenn¹, Helena Hoen¹, Beverley Richards¹, John W Smith II², Robert Lufkin², Todd S Crocenzi¹, Walter J Urba¹ and Brendan D Curti^{1*}

High dose interleukin-2 (Aldesleukin) - expert consensus on best management practices-2014

Janice P Dutcher^{1*}, Douglas J Schwartzentruber², Howard L Kaufman³, Sanjiv S Agarwala⁴, Ahmad A Tarhini⁵, James N Lowder⁶ and Michael B Atkins⁷

HD IL-2 extends OS in malignant melanoma April 18, 2015

Learning Objectives

- Understand the main effects of cytokines on immune cells.
- Identify the main patient selection criteria for IL-2-based immunotherapy.
- Describe the mechanisms for toxicity related to IL-2 administration.
- Describe the rationale for considering IL-2 immunotherapy.

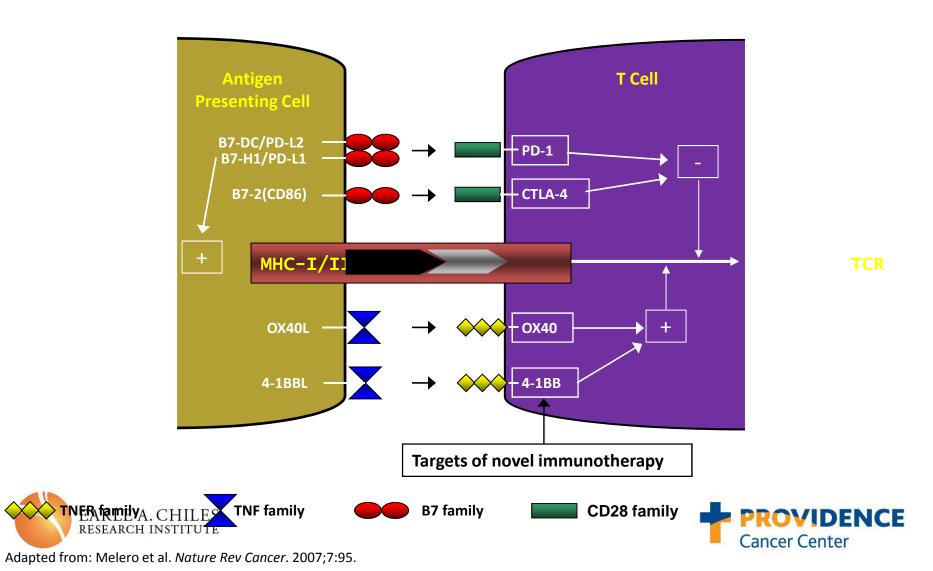
Overview

- Primer on how T cells work
- Cytokines in the immune system
- IL-2
 - Clinical applications
 - Toxicity anecdotes
 - Clinical response

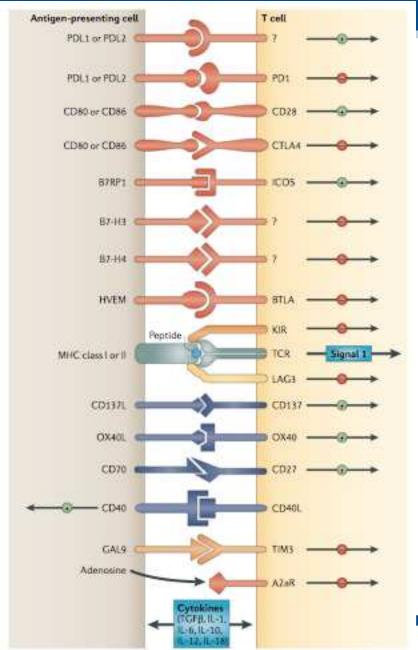
T Cell Mechanics

T-cell receptor: antigen/MHC

CD28 B7

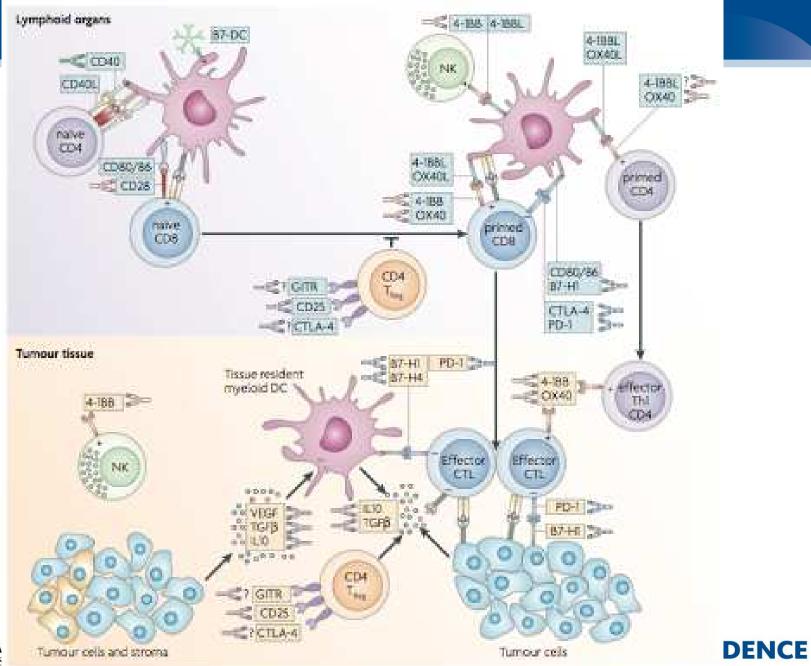


CTLA-4 B7



Vaccine?

T Cell Regulatory Pathways



More regulatory pathways . . .

Cancer Center

What are cytokines?

- Diverse family of immune cell regulators:
 - Interleukins
 - Chemokines
 - Tumor Necrosis Factors
 - Interferons
- Cytokines interact with cell surface receptors and influence:
 - Gene transcription and activation (of other cytokines)
 - Proliferation
 - Cytotoxicity
 - Immunological memory
 - Movement of cells into sites of inflammation
- Cytokines trigger a cascade of immunological events

More Details

Interleukins

- Type 1: γ-chain (IL-2, IL-15, IL-4, IL-13, IL-7, IL-9, IL-21); β-chain (IL-3, IL-5, GM-CSF); IL-6-like (IL-6, IL-11, IL-27, IL-30, IL-31); IL-12 family (IL-12, IL-23, IL-27, IL-35)
- Type 2: IL-10 family (IL-10, IL-22, IL-19, IL-20, IL-24, IL-26, IFN type III)
- Ig superfamily (IL- 1α , IL- 1β)
- IL-17 family (IL-17, IL-25)

Interferons

Alpha, beta, gamma (around 36 total)

Chemokines

- CCL (CCL1 - CCL28)

TNF

Cytokines That Have Been Tested in Humans

- IL-1-α
- IL-1-β
- IL-2
- IL-7
- IL-12
- IL-21
- Interferons
- TNFs

JOURNAL OF CLINICAL ONCOLOGY

EDITORIAL

Present Status and Future Prospects for Adjuvant Therapy of Melanoma: Time to Build upon the Foundation of High-dose Interferon Alfa-2b Stergios J. Moschos, John M. Kirkwood, University of Pittsburgh Cancer Institute, Pittsburgh, PA Panagiotis A. Konstantinopoulos, State University of New York Upstate Medical Center, Syracuse, NY

Interferon Factoids

- Remains the only FDA-approved adjuvant therapy for stage III melanoma
- Relapse-free survival consistent across 30 years of investigation
- Overall survival benefit remains controversial (3 – 5% range and not with low dose regimens)
- Findings of ECOG 1609 (IFN vs Ipilimumab in stage III melanoma) will be of interest.

IL-2 History

- 1965 Factor stimulating DNA synthesis derived from lymphocyte cultures¹
- 1976 Factor identified as a T-cell growth factor²
- 1983 First clinical use of lymphocyte-derived IL-2 for melanoma³
- 1984 Clinical trial of cell-line-derived IL-2 in cancer and AIDS⁴
- 1984 rIL-2 produced in *E coli* demonstrated the same range of biological activity as native IL-2²
- 1985 Clinical trials with rIL-2 for advanced malignancies²
- 1992 rlL-2 (aldesleukin) approved for metastatic RCC
- 1998 rIL-2 (aldesleukin) approved for metastatic melanoma

Major Selection Criteria for IL-2

- Metastatic renal cancer or melanoma
- Normal pulmonary and cardiac function as assessed by PFTs and ETT
- "Relatively" normal renal and hepatic function
- Controlled brain metastases
- No active infection
- No active autoimmune disease requiring steroids (vitiligo and autoimmune hypothyroidism OK)

IL-2 Treatment

- IL-2 = 600,000 international units per kg IVB x 14 planned doses.
- Manage clinical consequences of immune activation.
- Second cycle given after 2 week break. Scans repeated one month later.
- More IL-2 for lucky responders (up to 3 courses (6 cycles) maximum).

IL-2 Side Effects

- Constitutional (flu-like)
- Cardiovascular
- Gastrointestinal
- Pulmonary
- Metabolic
- Neurologic

- Hepatic
- Renal
- Dermatologic
- Capillary leak
- Hematologic/ immunologic

HYPOTENSION

FATIGUE

Hypothyroidism

Desquamation

Hepatic Dysfunction

HEART ATTACK

Hyperbilirubinemia

RASH

ACIDOSIS

Cardiac Tachy or Bradydysrhythmias

RENAL FAILURE

Weight gain/Fluid Retention
Hypoxia

Pleural effusions

DIARRHEA

Mucositis

Lymphopenia

Peripheral neuropathy

Vomiting

Pulmonary Infiltrates

NAUSEA

ITCHING

VITILIGO

Thrombocytopenia

Mental status changes

Stroke-like syndromes

Infection

Arthralgias/myalgias

Splenomegaly

Electrolyte abnormalities

Abut

Abdominal visceral perforation

Bleeding/Clotting

Physiology of IL-2-Induced Capillary Leak

- Nitric oxide
- TNF, IL-1
- Lymphocyte activation and movement through blood vessels
- Activation of prostaglandin pathways

Criteria to Consider Holding IL-2 Doses

- Sinus tachycardia 150
- A. fibrillation/SVT
- Hypotension
- Phenylephrine
 - 1-1.5 μ g/kg/min or higher
- Neurotoxicity
 - Vivid dreams
 - Emotional lability
 - Transient confusion
- Ileus/abdominal distention
- Diarrhea >1000 cc

- Severe nausea/vomiting
- Shortness of breath at rest
- 3-4 L/min O₂ by NC for saturation >90%
- Rales one third of the way up chest
- Significant oliguria
- Significant elevation in serum creatinine
- Weight gain 15% over baseline

Criteria to Consider Stopping IL-2

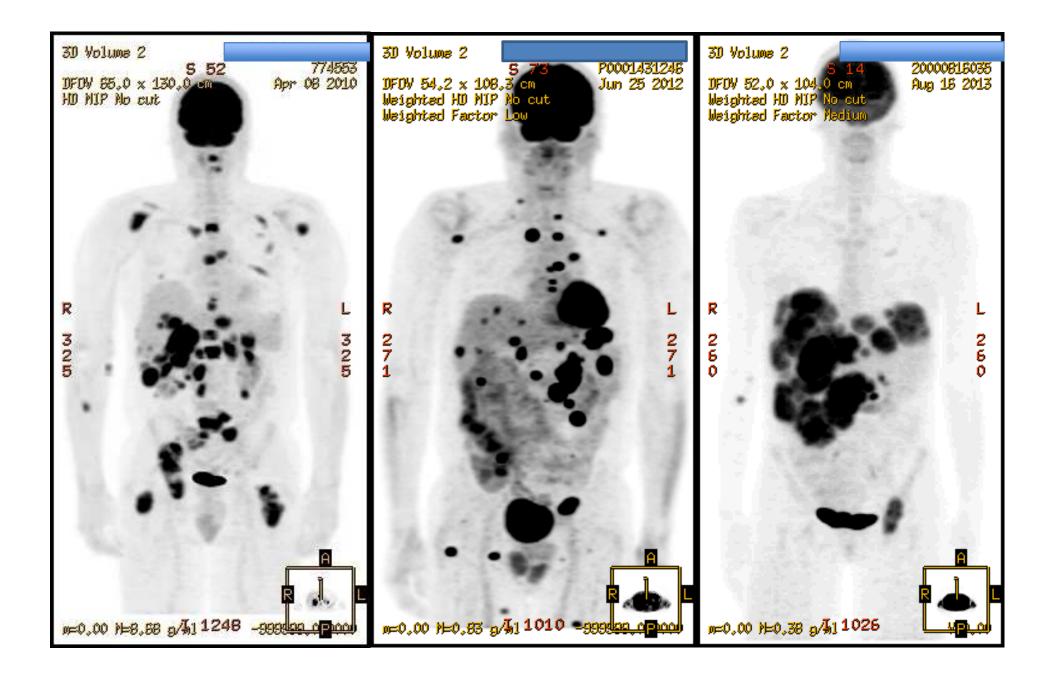
- Uncontrolled sinus tachycardia >150
- EKG changes of ischemia
- Uncontrolled atrial fibrillation/supraventricular tachychardia
- Ventricular arrhythmias
- Elevated CPK-MB
- Moist desquamation
- Diarrhea 1000 cc/shift × 2
- Vomiting unresponsive to medication

- Severe abdominal distention affecting breathing
- Severe abdominal pain, unrelenting
- Phenylephrine
 - $-3.0 \,\mu g/kg/min$
 - Prolonged need for high doses
- Frank blood in sputum, emesis, stool
- Platelets <30,000/μL
- Strong clinical suspicion of or documented infection

Criteria to Consider Stopping IL-2 (cont)

- Mental status changes not resolved in 2 hr
- Obtundation or coma
- Hallucinations
- Cortical blindness
- Limb or gait ataxia
- Speech difficulties
- >4 L/min O₂ by NC or 40% O₂ mask to maintain saturation >90%
- Endotracheal intubation

- Rales halfway up chest
- Pleural effusion requiring tap or chest tube while on therapy
- Significant oliguria or elevation in serum creatinine not improved by holding dose or low-dose dopamine
- Exacerbation of autoimmune and inflammatory disorders



Why do we offer this difficult (barbaric) treatment?

What is the Diagnosis?

Clinical History

- 52 year old white man presented with abdominal discomfort. Cholelithiasis suspected. US shows multiple hepatic masses. Biopsy shows melanoma (no primary evident). He volunteers for a clinical trial combining SBRT radiation + high-dose IL-2 (600,000 international units/kg IVB q8h x 14 planned doses). After dose 4 his SBP is 68/44, pulse 120, O2 sat 94% on RA.
- What would you do?

IL-2-Induced Hypotension: Physiology

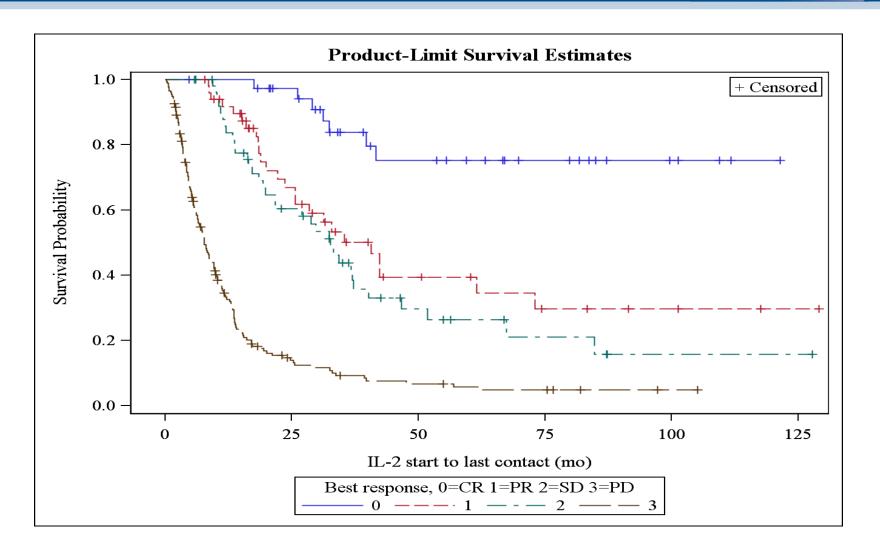
- Capillary leak from:
 - Nitric oxide
 - IL-1
 - TNF . . .
- Activated T cell trafficking
- Decreased cardiac contractility
- Analog to "warm shock" (e.g.: sepsis without the bugs)

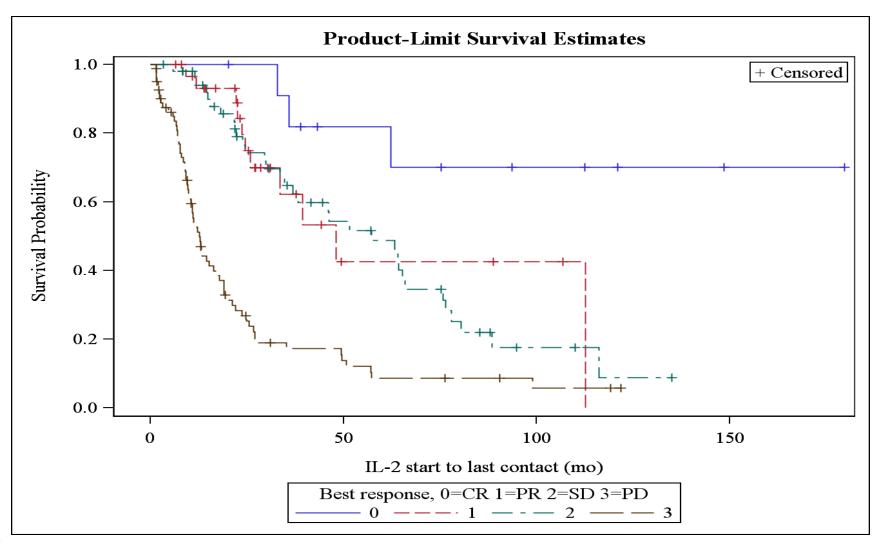
IL-2 Hypotension: Management

- Fluid bolus (e.g.: 250 NS x 3 (within 24 hours)) to achieve SBP > 85 mm Hg.
- Phenylephrine 40 µg/min IV titrated to maintain SBP > 85 mmHg
- In "IL-2-selected" patients, the usual 200 μg/min "maximal" dose used in the ICU is not relevant. Doses of phenylephrine > 5 μg/kg/min can be used.
- Clinical assessment of organ perfusion is key to pressor management. For patients with a high "SITS" (severe IL-2 toxicity score), then ICU transfer, norepinephrine.
- For cytokine circulatory collapse then consider hetastarch or methylene blue infusions, high-dose steroids, anti-TNF antibodies.

Clinical History continued

- Blood pressure was 75/45 mmHg after 3 NS boluses. Phenyephrine was started and within two hours the SBP was 80/50 mmHg at a phenyephrine dose of 325 μg/min. He then developed atrial fibrillation and BP decreased to 70/40. He was transferred to the ICU for amiodarone drip, and further pressor titration. He converted to NSR and within 10 hours was off phenylephrine.
- His response after IL-2 + SBRT was:


Befores and Afters


High-dose IL-2: Melanoma Survival

High-dose IL-2: RCC Survival

Conclusions

- IL-2 can be administered safely at sites experienced in cytokine toxicity management.
- Patients have significant, but reversible toxicity during IL-2.
- Objective responses occur that translate into a survival benefit in selected patients with melanoma and renal cell carcinoma.

