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Innate immunity

Properties of innate immunity
Components of innate immunity
— Epithelial barriers

— Cellular mechanisms

— Humoral mechanisms

Role of innate immunity in inducing adaptive
iImmune responses

Role of innate immunity in immune suppression



Innate and adaptive immunity
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Properties of innate immunity

- phylogenetically older

- preformed and immediately reacting to the encounter with pathogens
- repetead contacts with pathogen do not leave memory

- first line of defense

- archetypal discrimination between self and non self

- stimulates and shapes adaptive imunity



Principal components of innate immunity

- epithelial barriers (skin and mucosal membranes)

- pattern recognition receptors (TLR, scavanger receptors...)

- cells (phagocytes, innate lymphoid cells...)

- humoral components (collectins, complement, cytokines etc.)



Epithelial barriers and innate immunty
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- physical barrier

- normal bacterial flora (microbiota)

- chemical/molecular barrier
(production of antimicrobial peptides)

- direct elimination
(intraepithelial lymphocytes)



Cells of innate immunity: Hematopoyesis
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Monocyte and macrophage developmental pathways
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Cells of innate immunity

Cell type

Monocytes/Macrophages

Neutrophils

NK cells

Dendritic cells

Mast cells

Eosinophils

Main function

Phagocytosis, inflammation,
tissue repair

Phagocytosis, inflammation,
antimicrobial peptide production

Elimination of infected or tumor cells,
macrophage activation

Activation of naive T cells
Inflammation, vascular permeability

Defense against parasites



Pathogen Associated Molecular Patterns (PAMP)

Molecules shared by groups/classes of pathogens (i.e. Gram+ and Gram- bacteria)

- essential for their life cycle, replication and/or infectivity

- not present in mammalian cells
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structures of bacterial cell wall (LPS, peptidoglycan, flagellin...)

nucleic acids of pathogens (dsRNA, unmethylated CpG dinucleotides...)




Pattern Recognition Receptors (PRR)

Bacterial cell <@ TLR Fungal polysaccharide
wall lipid S, |Extrace||u|ar| o

)
-,

Lectin

i .909.0090090,0000000 000 5 - A .
"""" ‘Q.. “ '. - '..".' Q ' ’ L I - ‘ " “”"..Q, ‘

'UQQQ .00.00~000".’.’

ccccc

y * @ '

pou:.lotonucocr:asag:opqcrn¢-ooo@.o.-¢e—ac.o-,o.-acaouo SOOOOOOCIONOOOLN

Plasma
membrane

Viral DNA, ¢
Viral RNA ¢
‘% :

Bacterial cell
wall lipid

RLR

©§Viral RNA

Endosomal
membrane




Toll-like receptors
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Sensing of Damage Associated Molecular Patterns

NALP3 dimerization recruits
PYCARD, causing
aggregation and proteolytic
activation of caspase 1

Efflux of K* ions from
damaged cells induces
dissociation of cytoplasmic
proteins from NALP3

Caspase 1 releases mature
inflammatory cytokines
such as IL-1 and IL-18 from
their proproteins

cell ) é’/’:) Q

Low K*

damage K* efﬂ%

<

L7

1 @,
l ' caspase 1 f

PYCARD
* cleavage
caspase 1
pro-
enzyme

AQ
4»

f

IL-18 @ cytokine

pro-

IL-18 -* proteins

active
caspase 1

Figure 3.16 Janeway’s Inmunobiology, 8ed. (© Garland Science 2012)
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DAMPs in the response to chemo-radiotherapy
treatment of tumors. The example of HMGB1
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From: Guo SZ et al, Am J Cancer Res 2013; 3: 1-20

Acute release of HMGB1

Cancer therapies induce apoptosis
of cancer cells, with acute release
of DAMPs, e.g. HMGB1, promoting
maturation of DCs through
interaction with TLRs, presentation
of tumor antigens, activaion of
anti-tumor T cell immunity

Chronic release of HMGB1

In contrast, persistent hypoxia in
growing tumors leads to necrosis,
causing chronic release of HMGB1,
which promotes angiogenesis and
tumor growth through the
recruitment oftumor associated
macrophages (TAM) and
endothelial precursor cells (EPC).
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Role of phagocytes in innate immunity

Order of events following infection

. Entry of pathogen

. Recognition of pathogen

. Phagocytosis and killing of pathogen
. Inflammation induction

. Chemoattraction of other cells to the infection site

. Pathogen elimination and/or adaptive immunity activation

. Tissue repair and remodeling



Classic and alternative activation of macrophages
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Metabolic and molecular pathways for TAM programming
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Macrophage plasticity
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Role of Natural killer (NK) cells in innate immunity

Killing of cells infected by
intracellular pathogens
(eg. viruses) and
tumor cells

Activation of
macrophages (by IFN-y)

(;. S 2 —"' »_‘ p ,‘._
Macrophage with —
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Mechanisms of NK cell activation
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Copyright © 2012, 2007, 2005, 2003, 2000, 1997, 1994, 1991 by Saunders, an imprint of Elsevier Inc.

- activating receptors recognize stress-induced molecules on cell
surface (including virus infected and neoplastic)

- inhibitory receptors recognize MHC class I molecules



Restoring intratumoral NK cell functions with cytokines

NK cell responsiveness
and tlumor reqrassion

NK cell anergy
and tumor progression

Restoration of NK cell responsiveness
and tumor regrassion
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Innate Lymphoid Cells (ILC)
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ILC2, ILC3 and regional immunity
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Role of microbiota in inflammation,
carcinogenesis and cancer therapy
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Humoral mechanisms of innate immunity

Pentraxins

- complement proteins gi
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- cytokines %
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The double-edged sword of complement action in cancer
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Complement is likely to have a dual role

in cancer.

- It contributes to protection through direct activation
of complement or as part of the complement-
dependent cytotoxicity (CDC) of tumor-directed
therapeutic antibodies.

-The generation of C5a in the tumor
microenvironment can attract myeloid-derived
suppressor cells (MDSC) and induce the generation of
reactive oxygen and nitrogen species (ROS and RNS,
respectively) through the C5a receptor (C5aR), which
impairs the tumor-directed effect of T cells.

Bruce E Loveland & Jonathan Cebon : Cancer exploiting complement: a clue or an exception? Nature Immunology 2008
Daniel Ricklin, George Hajishengallis, Kun Yang & John D Lambris Complement: a key system for immune surveillance and homeostasis surveillance and homeostasis Nature

Immunology 2010



Cytokines in innate immunity
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TNF in cancer: target or treatment?
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Functions of the different Antigen
Presenting Cells (APCs)
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Role of innate immunity in stimulation of adaptive
immune response

Antigen recognition T cell response
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Microbiota control of response to cancer therapy
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