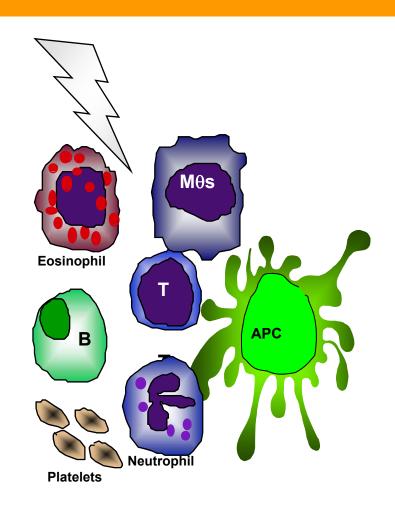
Primer on Adoptive Cell Therapy

C. H. June, M.D. November 6, 2014

cjune@exchange.upenn.edu

Presenter Disclosure Information

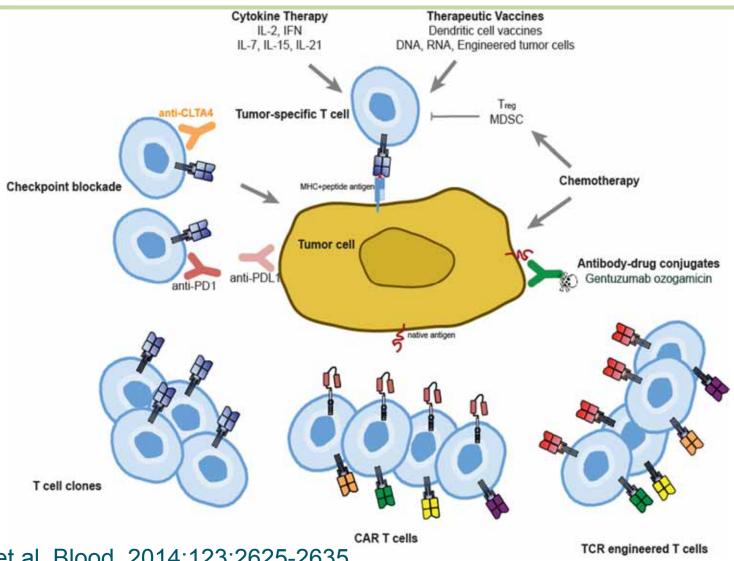
Carl June


The following relationships exist related to this presentation:

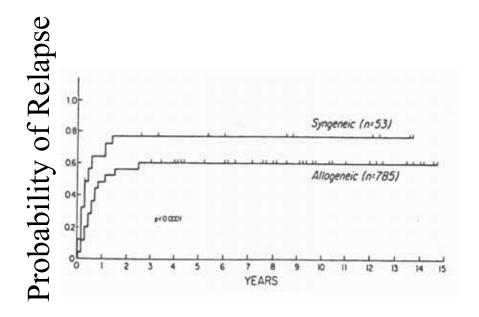
Novartis

- Sponsored research grant
- Intellectual Property
- Royalties

Outline: Engineered T Cells

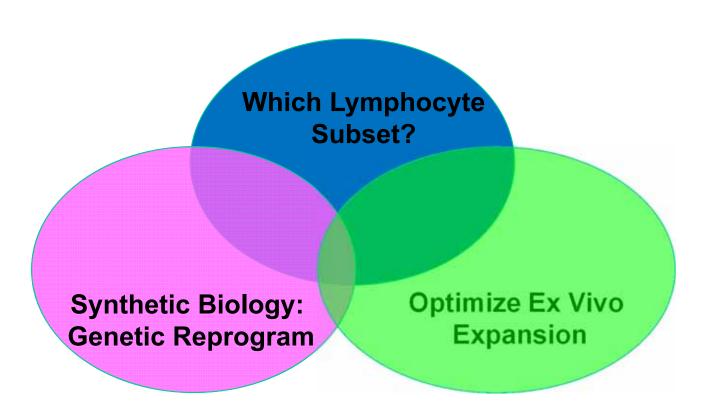

- Synthetic biology: approaches to overcome tumor immune suppression and tolerance
- TCR engineered T cells
- CAR T cells
- TILs

The Three Laws of Immunology


- 1. The Immune System is Capable of Recognizing a Virtually Unlimited Array of Specific Structures or "Antigen" (Universality)
- 2. The Response to Self-Antigens is Eliminated or Controlled (*Tolerance*)
- 3. The Response is Appropriate to the Inducing Pathogen (Appropriateness)

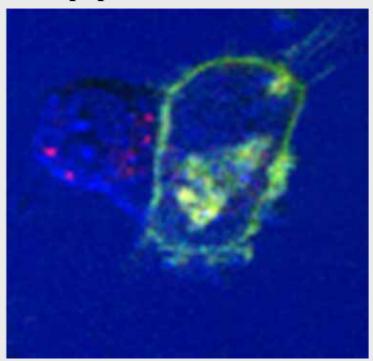
Approaches to Overcome Tolerance: Immune Tolerance to Cancer

Maus MV et al. Blood. 2014;123:2625-2635.


Immune Responses Can Cure Chemotherapy Resistant Human Tumors

Weiden and Thomas, 1970s

- Allogeneic but not syngeneic bone marrow transplants shown to cure childhoood leukemia
- The allogeneic immune response is the most potent antitumor effect known, but can not be routinely used in adults due to limited donors and graft versus host disease.

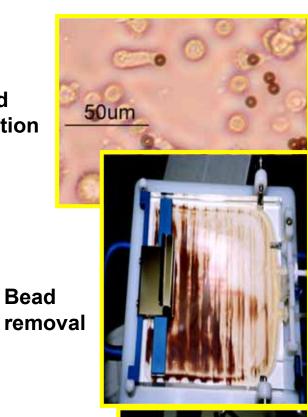

Essential factors for augmenting adoptive immunotherapy

CTLs (Killer) T Cells: Primary Weapons for Cancer Gene Therapy

- CTLs can be "serial" killers:
 One T cell can kill many tumor cells
- T cells evolved to kill cells with new RNA or DNA, i.e. viruses (and tumors)
- Non-cross resistant killers:
 Because T cells have many killing mechanisms, they can be more effective than any single drug
- T cells can be self replicating, unlike drugs

Example of CTL killing a tumor cell: rapid induction of apoptosis

Stinchcombe J, et al. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 2001;15:751-61.


Considerations for T Cell Therapy

- 1 kg of tumor = 10¹² cells
- Our first 3 patients had 3 to 7 lbs of tumor!
- It is not realistic to expect tumor eradication unless the killing machinery (T, NK, macrophage) is equivalent to tumor burden. i.e. "E:T" ratio ~= 1
- Failure to achieve critical mass of T cells explains previous trials with disappointing results
- Two potential solutions:
 - Infuse huge numbers of T cells (TILs)
 - Infuse small numbers of T cells programmed to divide

Development of Clinical Scale T Cell Manufacturing Process

- 1987: Discovery that CD28 is 'gatekeeper' for T cell proliferation (Mol Cell Biol, 1987)
- 1993: CD3/CD28 beads first produced
- 1996: First HIV patients treated
- Research was funded by the Office of Naval Research.
- Patents owned by US Government.

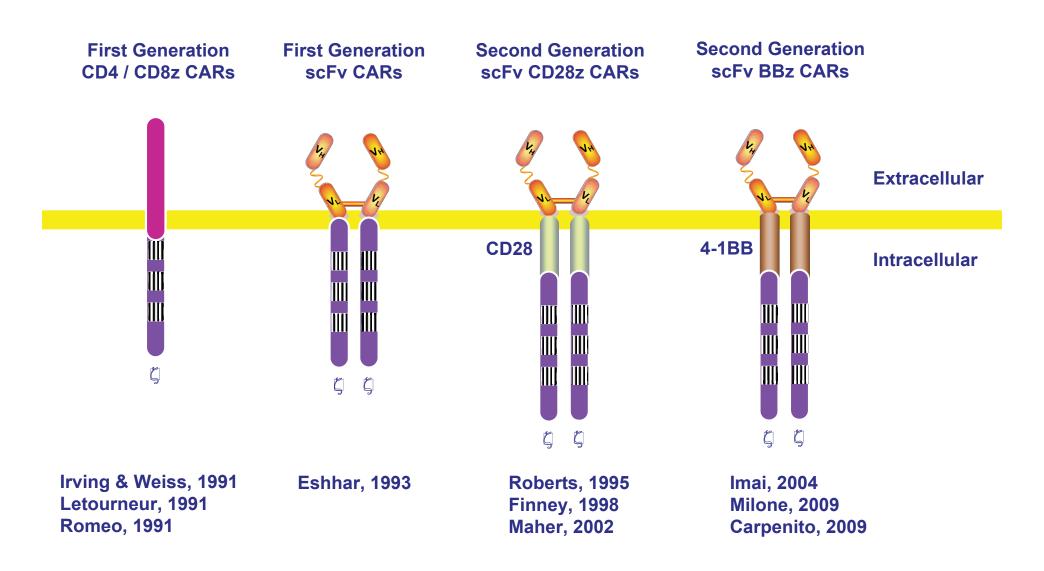
Bead addition

T cell infusion

Translational lessons:

- 1. Basic science discoveries
- 2. Unrestricted funding from government
- 3. Long time frame: patience!

Synthetic Biology: Cell therapy and gene therapy at the crossroads


• "Synthetic biology is a new area of biological research that combines science and engineering. Synthetic biology encompasses a variety of different approaches, methodologies and disciplines, and many different definitions exist. What they all have in common, however, is that they see synthetic biology as the design and construction of new biological functions and systems not found in nature."

Using Synthetic Biology to Overcome Tolerance Creation of Bi-specific T cells

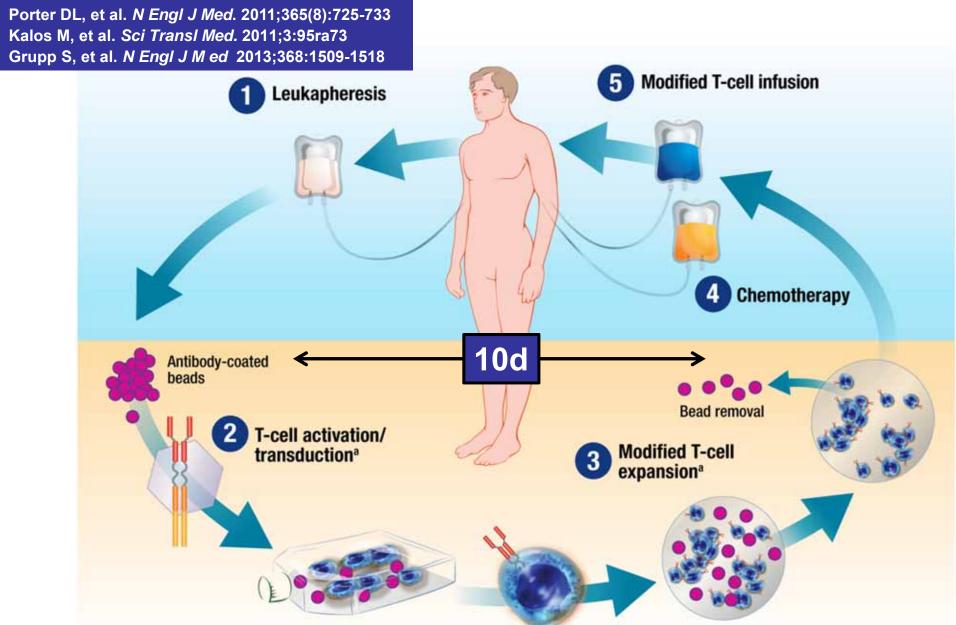
TCR heterodimer approach "CAR" or T body approach **TCR Chimeric Protein** - off the shelf - MHC independent **Tumor binding domain** CD3 **Extracellular** \mathbf{III} Intracellular lacksquare**Signaling domain** \mathbf{III} 3 3 IIII - ITAM

Kalos & June. Immunity. 2013;39:49-60

Design of CAR T Cells

Engineered CARs and TCRs: which is "better"?

TCR

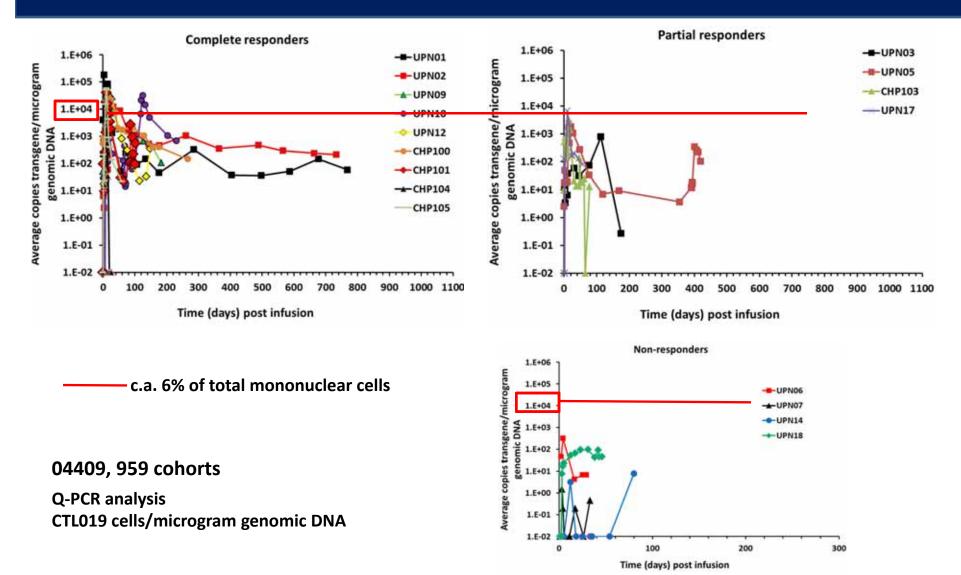

1. Sensitive signal amplification derived by evolution

- 2. Low avidity
- 3. Targets intracellular proteome
- 4. Requires MHCI expression and HLA matching on tumor cell
- 5. Life long persistence

CAR

- 1. Signal amplification derived by synthetic biology
- 2. Avidity controllable
- 3. Targets only surface structures
- 4. MHC independent: "off the shelf"
- 5. Shorter in vivo persistence?

Second Generation CAR CLL Study Overview*

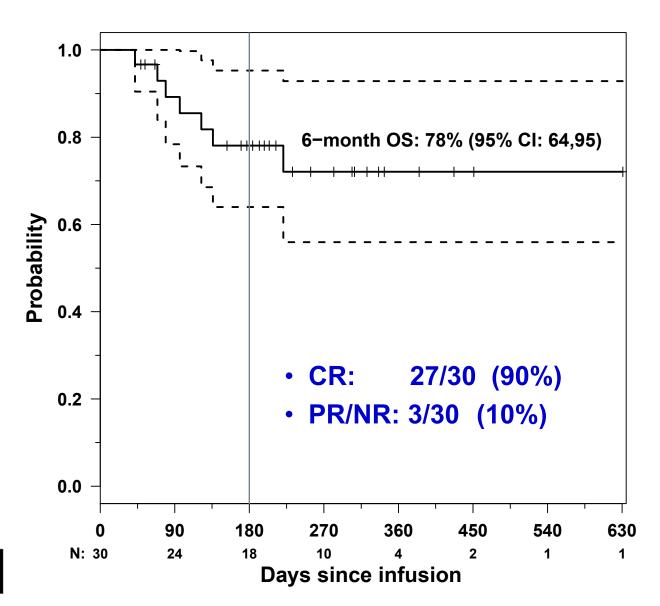

^{*} ClinicalTrials.gov #NCT01029366

CART19 CLL: Generalities on First 3 Treated Patients

- All 3 patients had Chronic Lymphocytic Leukemia (CLL)
 - ✓ Late stage incurable leukemia
 - √ 3.5-7 pounds of tumor/patient
- Each infused CAR T cell or its progeny
 killed more than 1000 tumor cells: CARs are "Serial Killers"
- Remissions durable to date
- Sustained antibody delivery with a single infusion of engineered T cells (beyond 3+ yrs)

Porter, D.L. et al.. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia New England Journal of Medicine 365:725-733. Kalos, M., et al. 2011. T cells expressing chimeric receptors establish memory and potent antitumor effects in patients with advanced leukemia. Science Translational Medicine 3:95ra73.

Predictive Biomarker: Magnitude of peripheral CTL019 cell expansion distinguishes responders



Clinical Update of Pediatric and Adult ALL Patients Treated with CART19

	Pediatric Cohort N=25	Adult Cohort N=5	Total N=30
Sex			
Female	11 (44%)	1 (20%)	12 (40%)
Male	14 (56%)	4 (80%)	18 (60%)
Age at Infusion Median (range)	11 (5, 22)	47 (26, 61)	14 (5 ,61)
Race			
African American	1 (4%)	1 (20%)	2 (6.7%)
Asian	2 (8%)	5 V5 5 5 7 7	2 (6.7%)
Caucasian	21 (84%)	4 (80%)	25 (83.3%)
Pacific Islander	1 (4%)	13 N = 1 - 3/2 /	1 (3.3%)
Post Allogeneic Transplant			
Yes	18 (72%)	0 (0%)	18 (60%)

Maude et al, NEJM 2014

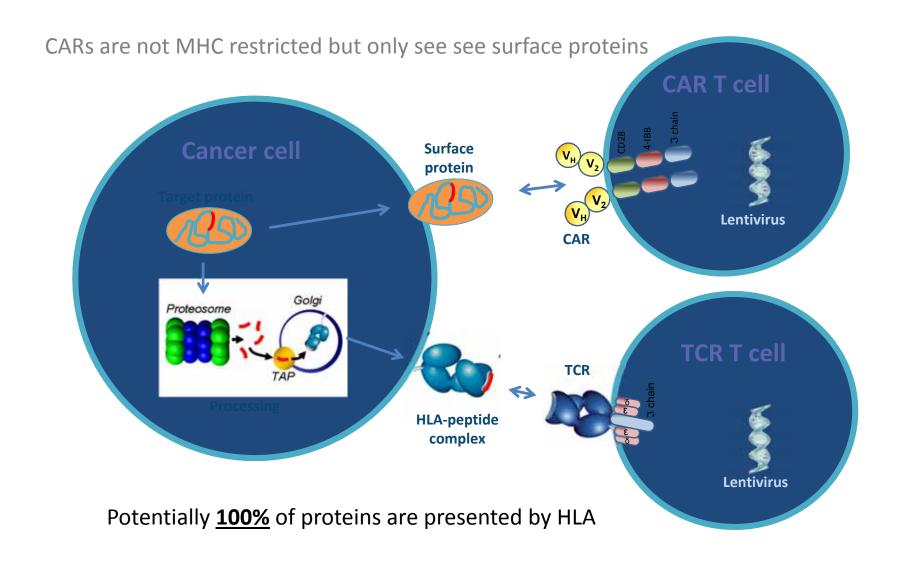
Summary of CART19 Efficacy in ALL (n=30) Case mix on phase I: 25 pediatric and 5 adult

Allogeneic CART19 for Relapsed CD19+ Disease

Kochenderfer et al. Blood 2013:122(25):4129

- All pts with disease after allo-HSCT and prior DLI
 - N=10 (4 CLL, 4 MCL, 2 DLBCL)
- CARs manufactured from each patient's allo-HSCT donor
 - Matched sibling donor (6), Unrelated donor (4)
 - Cell dose: 0.4 7.8 x 10⁶ CAR T/kg
- Results
 - 1 CR (CLL, URD) 9+ mo
 - 1 PR (MCL, URD) 3+ mo
 - 6 SD (1-11+ mo); 2 PD
 - => No GVHD. Towards universal donors for CAR T cells?

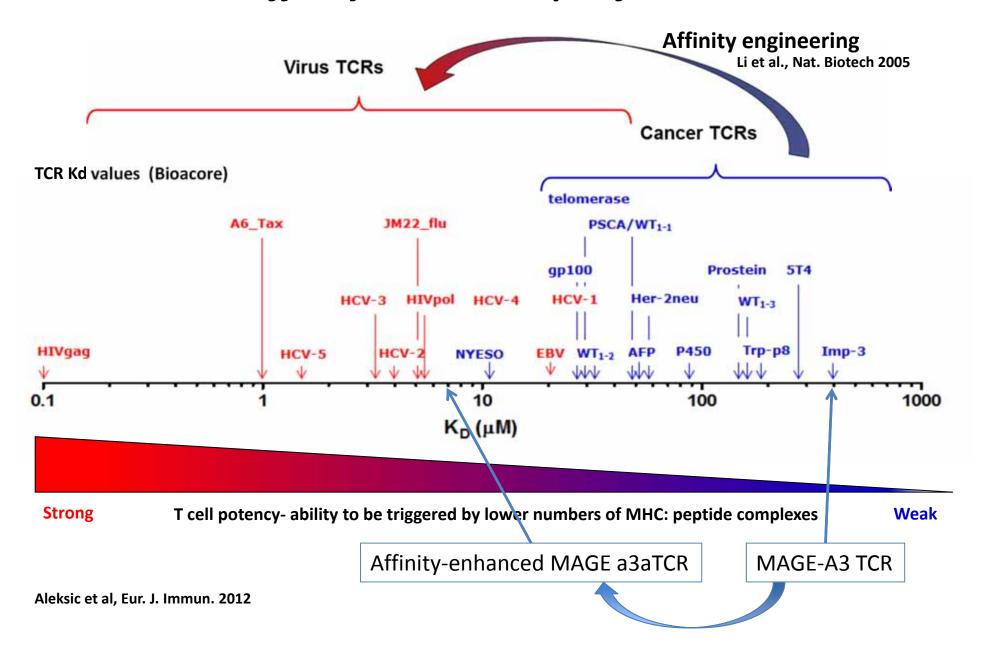
B Cell Aplasia: Is it necessary and for how long?


- Do CD19 CARs kill all leukemic "stem cells"?
- Cancer stem cells can persist more than a decade!
 - MacKie et al. Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N Engl J Med. 2003;348:567-568.
- Strategies to mitigate or terminate B cell aplasia:
 - Conditional suicide systems to eliminate CARs
 - Target B cell subsets to preserve repertoire
 - Anti-lambda or anti-kappa CARs
 - Anti-idiotype CARs

CARs in Development

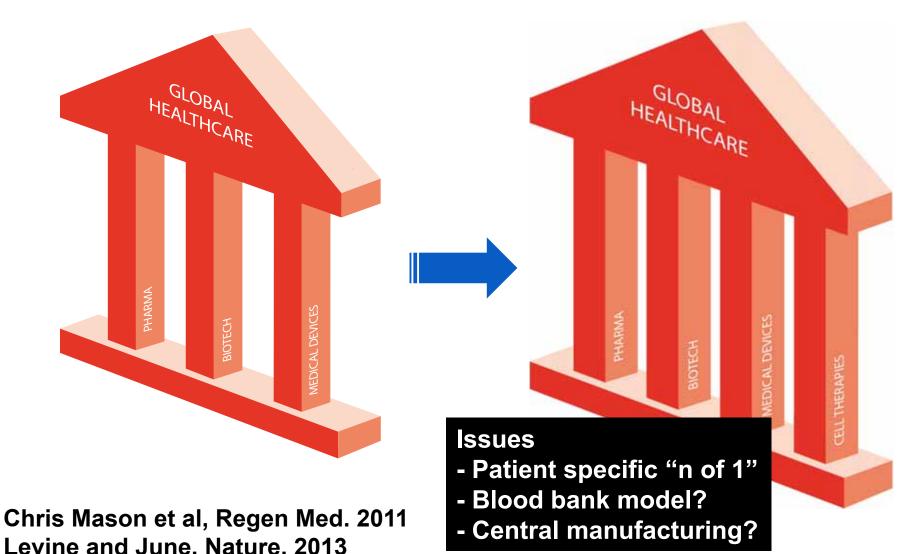
Commercial CARs: Celgene, Juno, Kite, Novartis, Opus, Takara

Academic Institute (US)	Target(s)	
Fred Hutchinson Cancer Center	CD20	
Baylor College of Medicine	GD-2, Her2, CD30, kappa Ig	
National Cancer Institute (NCI)	CD19, EGFRvIII, mesothelin	
Roger Williams Medical Center (RI)	CEA, PSMA	
University of Pennsylvania	CD19, mesothelin, BCMA, EGFRvIII	
Offiversity of Fermisylvania	PSMA	
Children's Mercy Hospital Kansas City	GD-2	
Academic Institute (non-US)	Target(s)	
Chinese PLA General Hospital	CD19, CD20, CD33, CD138, HER2	
Christie Hospital NHS Foundation Trust	CD19	
Peter MacCallum Cancer Centre, Australia	LewisY	
University of Zurich	FAP	


TCRs can recognize intracellular proteins

2013: Highly potent engineered T cells show tumor specificity is required. Cross reactivity can be lethal!

- 1. Linette, G.P. et al. 2013. Cardiovascular toxicity and titin cross-reactivity of affinity enhanced T cells in myeloma and melanoma. Blood 122:863-871.
- 2. Cameron, B.J., et al. 2013. Identification of a Titin-Derived HLA-A1—Presented Peptide as a Cross-Reactive Target for Engineered MAGE A3—Directed T Cells. Science Translational Medicine 5:197ra103.
- 3. Morgan, R.A., et al. 2013. Cancer Regression and Neurological Toxicity Following Anti-MAGE-A3 TCR Gene Therapy. J Immunother 36:133-151.


TCR Affinity Engineering Can Impart Viral-like TCR Affinity to Cancer-specific TCRs

Conclusions and Implications MAGE A3 Enhanced TCR

- ## First example of off-target effects with TCR-engineered T cells
 - Affinity enhanced TCR engineered T cell therapy at risk for cross-reactivity
 - Biologically relevant preclinical screening of new TCRs is critical
- Dose reduction may not ameliorate risk and may only delay onset of toxicity (due to in vivo T cell expansion)
- Toxicity management: corticosteroids did not ablate toxicity in case #2. Would suicide systems or other forms abort toxicity?
- NY-ESO-1 TCRs are safe with encouraging clinical results to date

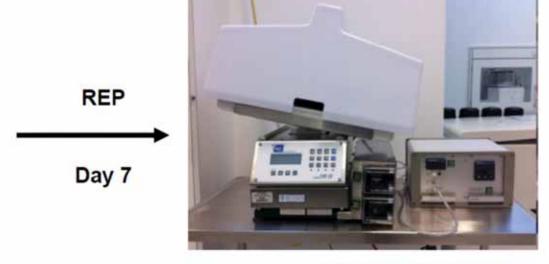
Health Care Challenges

Levine and June, Nature. 2013

TILs vs CAR T Cells

"When you come to a fork in the road, take it"

Yogi Berra


TIL Manufacturing in Blood Banks Improved Culture Process

From Static to Dynamic culture (REP)

Introduction of a Practical Protocol for semi-automated TIL expansion

Anti-CD3 Feeder Cells IL-2

Wave® Bioreactor

- Less manipulations
- Operator dependent actions x6 only during weekdays
- Scalable to Blood Banks

Inge-Marie Svane, Copenhagen

Melanoma Phase III TIL Trial: Europe

Randomized phase III trial

- Generate robust efficacy data
- Approval of TIL therapy as standard treatment
 (Collaborators: J. Haanen, Netherlands Cancer Institute, R. Hawkins, University of Manchester)

Combination therapies

- BRAF inhibitor
- Interferon-α

Inge Marie Svane CCIT, Herley, DK

John Haanen NKI, Amsterdam, NL

Robert Hawkins The Christie, Manchester, UK

Lessons and Take Home Messages

- Adoptive cell therapy (ACT) is currently served with 3 flavors:
 - ✓ CAR T cells
 - ✓ TCR engineered T cells
 - ✓ TILs and CTL lines/clones
- After many years ACT is heading towards FDA approval:
 - ✓ CD19 CARs for leukemia
 - ✓ CD19 CARs for lymphoma
 - ✓ TCR T cells for sarcoma and melanoma
- Issues in the field:
 - ✓ how to combine with checkpoint inhibitors?
 - ✓ Manufacturing scale up: robotics, automation and engineering
 - ✓ Target identification