Advances in Cancer Immunotherapy

Immunology 101 for the Non-Immunologist

Esteban Celis, M.D., Ph.D. ecelis@gru.edu

Disclosures

Consulting Fees

ViaMunne, Inc.

Contracted Research

Vasculox, Inc.

Hemispherx

Gliknik, Inc.

Merck Research Laboratories

Ownership Interest

ViaMune, Inc.

Cellular Origin of Immune Cells

Bone marrow

Innate vs Adaptive

Innate immunity:

Resistance that exists before infection

First line of defense

Broad (no) specificity

Macrophages

Neutrophils

Eosinophils

NK cells

Most potential pathogens are detected before they establish an infection

Innate vs Adaptive

Adaptive Immunity

- Antigen specific receptors
- Responds to antigen stimulation with proliferation and differentiation
- Gives rise to immunologic memory
 - T lymphocyte
 - B lymphocyte antibody producing cells
 - Professional Antigen Presenting Cells (APC)

Antigen: Molecule (usually a protein) that react with an antibody (antibody generating)

General Immune Responses

	Innate	Adaptive
Type of Response	Antigen-Independent	Antigen-Dependent
Time to max response	Immediate	Lag between exposure and response
Specificity	Broad	Antigen-specific
Memory	None	Yes
Evolutionary Origin	Early (vertebrates)	Recent (mammals)
Examples	Inflammation, macrophages	Antibodies, T cell mediated immunity

Adaptive Immunity

Cellular immunity:

- Mediated by T lymphocytes
- Require antigen presentation by a professional antigen presenting cell
- CD4+ (helper) T cells: Produce cytokines for activation of other immune cells
- ➤ CD8+ (cytotoxic) T cells: Recognizes and kills specific target cells: virus-infected cells, tumor cells

Humoral immunity:

- Antibody-mediated immunity
- > B cells with help from dendritic cells and T helper cells

Immune Tissues and Organs

Primary lymphoid organs – maturation

- Thymus: The site of T cell maturation.
- Bone marrow: The site of B cell maturation

Secondary lymphoid organs – activation

- Lymph nodes
- Spleen
- Mucosal immune system (mucosal-associated lymphoid tissue, MALT)

Antigen Presenting Cells

Types of antigen presenting cells (APC)

B-cells

Macrophages

Dendritic cells

- Presents peptide derived from antigen to CD8 and CD4 T cells (signal 1)
- Provides co-stimulation signals (signal 2)
- Provides polarization signals

Signal 1 and 2 are required for T cell activation

T Cell Activation

Signal 1: Major Histocompatibility Complex

Presents peptide antigens to the T cell receptor (TCR)

MHC class I (HLA-A/B/C)

- Presents peptide to CD8 T cells
- Typically peptides derived from endogenous proteins
- Restricted peptide size (8-11 aa)
- Expressed on most cells

• MHC class II (HLA-DR)

- Presents peptides to CD4 T cells
- Typically peptides derived from exogenous proteins
- Broader peptide size (18-20 aa)
- Only expressed by APCs

Signal 1: Antigen Presentation

- Initial signal for T cell activation
- In the absence of signal 2, T cells will not be activated, may undergo apoptosis

Signal 2: Co-Stimulation

- Signaling between CD28 on T cells and B7.1/B7.2 on APC
- Leads to production of IL-2 required for T cell survival and proliferation

Polarization

T Cell Activation

Virally Infected cells Dendritic Cell T cells **Tumor cells MHC** class I → Cytotoxicity **CD28** class I **Helper functions** CD4+ Cytokines for Inflammation polarization B cell activation Regulation

Regulation of T cell Activity

Regulation of T Cell Activity

CTLA-4

- Induced in activated T cells
- Also binds to B7.1 and B7.2
- Higher affinity than CD28
- Squelches the CD28 signal

Net effect of CTLA-4 signaling is to shut off T cell activity

Regulation of T Cell Activity

PD-1

- Expressed on chronically activated T cells; marker of T cell exhaustion
- Binds to PD-L1/PD-L2
- Constitutively expressed on many cells (APCs, tumor cells)

Blocking the PD-1/PD-L1 pathway can reverse T cell unresponsiveness in chronic viral infections

Tolerance: Ignorance to Self Antigens

Mechanisms:

Clonal deletion of T cells that recognize "self"

Occurs in the thymus

Clonal inactivation of T cells in the periphery

Regulatory T cells (Tregs)

Myeloid Derived Suppressor Cells (MDSC)

These mechanisms also participate in the induction of tolerance to gut flora, fetus, and tumors.

Summary

Normal immune state is in balance

- Allows recognition of pathogens while avoiding reactivity to self
- Has built in mechanisms to limit the immune response
- Tumors tip the balance to a non-responsive state
- Approaches to enhance activation while blocking the suppression mechanisms can allow immune recognition of the tumor

