Advances in Cancer Immunotherapy

Immunology 101 for the Non-Immunologist

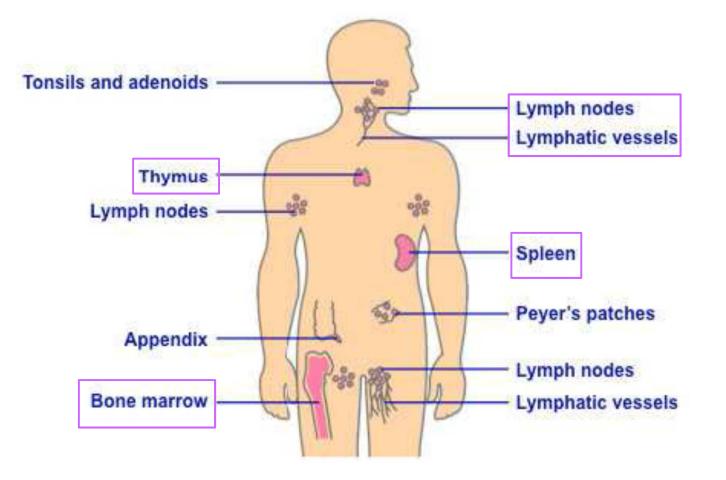
Arnold H. Zea, PhD azea@lsuhsc.edu

Disclosures

- No relevant financial relationships to disclose
- This presentation does not contain discussion of published and/or investigational uses of agents that are not indicated by the Food and Drug Administration (FDA)

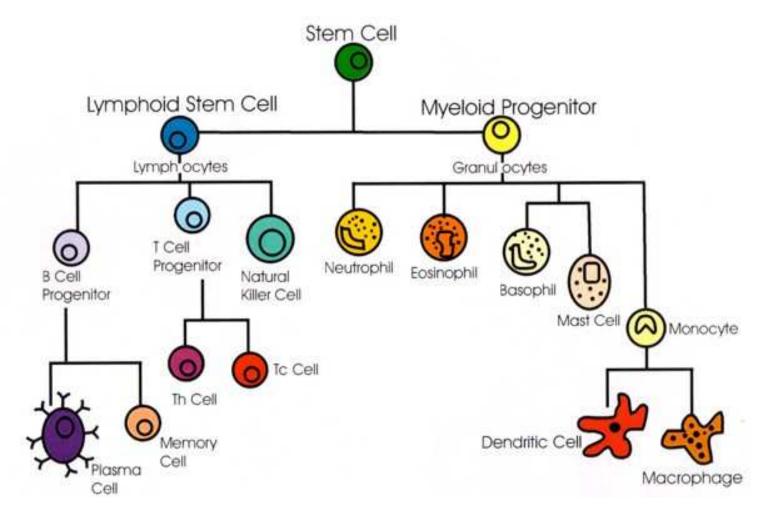
Learning Objectives for Today

- Recall the cells and specialized lymphoid tissues that are the main components of the immune system
- Understand the basic principles of immunity: role of innate and adaptive immunity; the difference between a primary and a secondary response and passive and active immunity
- Describe in very general terms the immune response to a **pathogen** and to a **tumor** cell
- Have a basic understanding of **immune malfunction**
- Have a basic understanding of T and B-cell activation and consequences



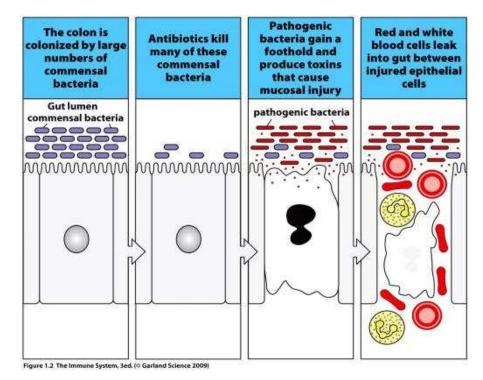
What is the Immune System

- A network of organs, tissues, cells and proteins all coordinated to defend the host from outside organisms/invaders
- Is an infinitely adaptable system to combat the the complex and endless variety of pathogens that it comes into contact with
- The immune response is mediated by:
 - White Blood Cells (leukocytes)
 - Soluble molecules/mediators
 - Plasma proteins such as complement and antibodies
 - Antimicrobial mediators
 - Cytokines



Organs of the Immune System

Cellular Origin of Immune Cells



Rational DiscoveryBlog.com

The skin and mucosas form barriers against infection

- Epithelial cells and their products provide a physical and a chemical 'barrier' to pathogens.
- Commensal species prevent pathogens from colonizing by simple competition for space and by secretion of antibacterial factors.
- Most pathogens are eradicated by the innate immune system:
 - 1. Recognition of the pathogen
 - 2. Recruitment of effector mechanisms
 - 3. Complement interacts with pathogens to mark them for destruction and killing

Complement

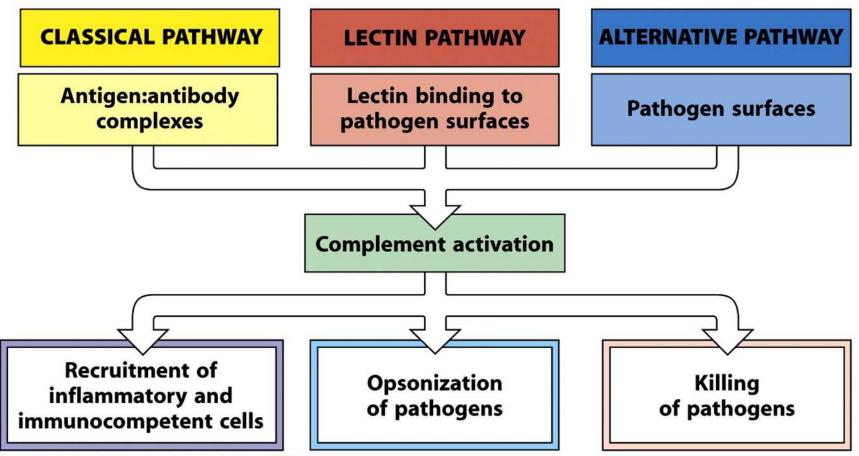
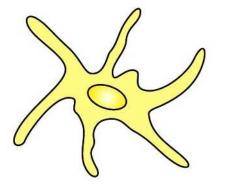


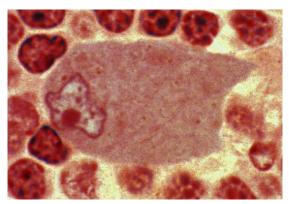
Figure 2-24 Immunobiology, 7ed. (© Garland Science 2008)

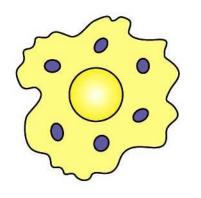
Innate Immunity

• Innate immunity:


- First line of defense/Resistance before infection
- Rapid response minutes to hours
- Recruits immune cells to sites of infection
- Activation of Complement system
- Kills pathogens and process antigen to initiate adaptive immunity
- Not specifically directed against the invading microorganism (not antigen specific)
 - Dendritic cells/Macrophages
 - Neutrophils
 - NK cells

- NO IMMUNOLOGICAL MEMORY

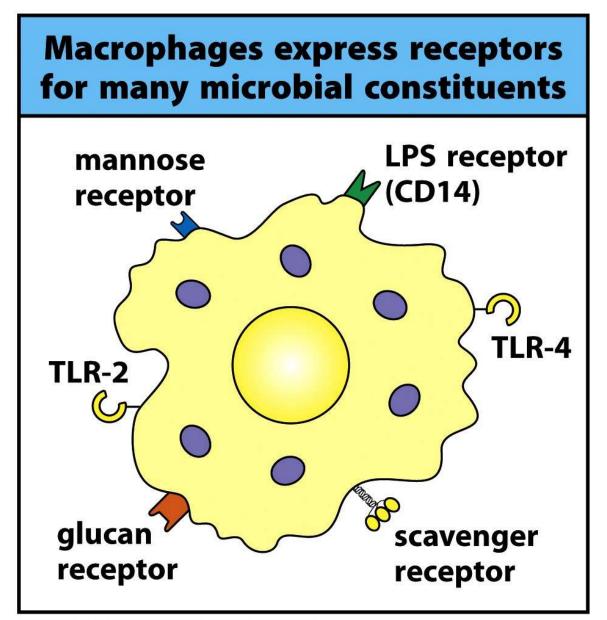
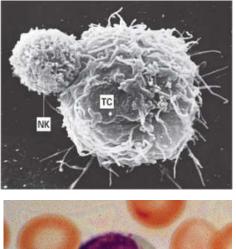
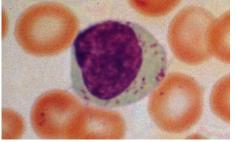

Dendritic Cells

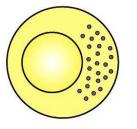


- Function: Serve as the gateway between the innate and adaptive immune systems.
 - Sample the surrounding environment and determine whether or not to initiate an immune response
 - Multiple different functional subsets regulate and shape the ensuing immune response
 - Antigen uptake in peripheral sites
 - Antigen presentation
 - **Location:** interfaces with the environment (lung, intestine and skin) and sites of immune interactions(spleen, lymph nodes, Peyer's)
- Key Markers: CD11c⁺

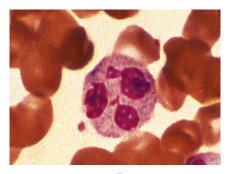
Macrophages

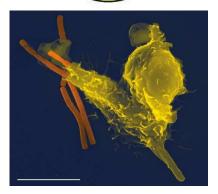
- Function: "Big Eaters" with multiple overlapping roles both at beginning and end of the immune response
 - Like DC they also sample the environment, but also have cytotoxic capabilities
 - Phagocytosis and activation of bactericidal mechanisms and antigen presentation
 - They are key regulators of wound repair and resolving an immune response
- Location: All tissues. Interfaces with the environment, sites of immune interactions, sites of inflammation
- **Key Markers:** CD11b⁺, CD68⁺, CD14⁺


Figure 1-10 Immunobiology, 7ed. (© Garland Science 2008)

Natural Killer Cells (NK)




- **Function**: Early responders that have cytolytic potential as well as the ability to activate the immune system
 - "Natural Killing" is the ability to kill tumor cells without prior activation
 - Big sensors of altered self e.g. loss of MHC Class I or up-regulation of stress molecules (e.g. heat shock protein)
- Location: bone marrow, immune sites
 (lymph nodes, spleen, tonsils and thymus)
 and the circulation
- Key Markers: CD56⁺, CD16⁺

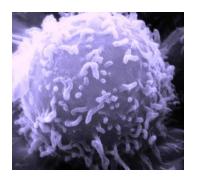
Neutrophils

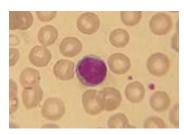
- Function: Leave the blood and migrate to sites of infection in a multi-step process involving adhesive interactions that are regulated by macrophage-derived cytokines and chemokines.
 - Rapidly recruited to site of infection
 - Functions in anaerobic conditions
 - Capture, engulf and kill cells
 - Are the hallmark of acute inflammation
- Localization: Blood stream
- Key Markers: CD15⁺, CD66⁺, HLA-Class I

Adaptive Immunity

• Cellular Immunity

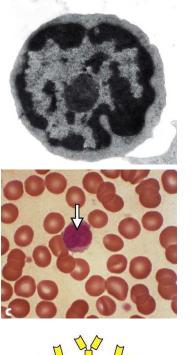
- Mediated by T lymphocytes
- Requires Ag presentation by professional APCs
- CD4⁺ (helper): cytokine production for activation of other cells
- CD8⁺ (cytotoxic): recognizes and kills specific target cells

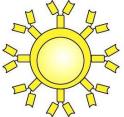

• Humoral Immunity


- Mediated by B lymphocytes
- Antibody-mediated immunity
- B cells require dendritic and T helper cells to produce antibodies against soluble Ags

- MEMORY CAN LAST A LIFETIME

T-Cells

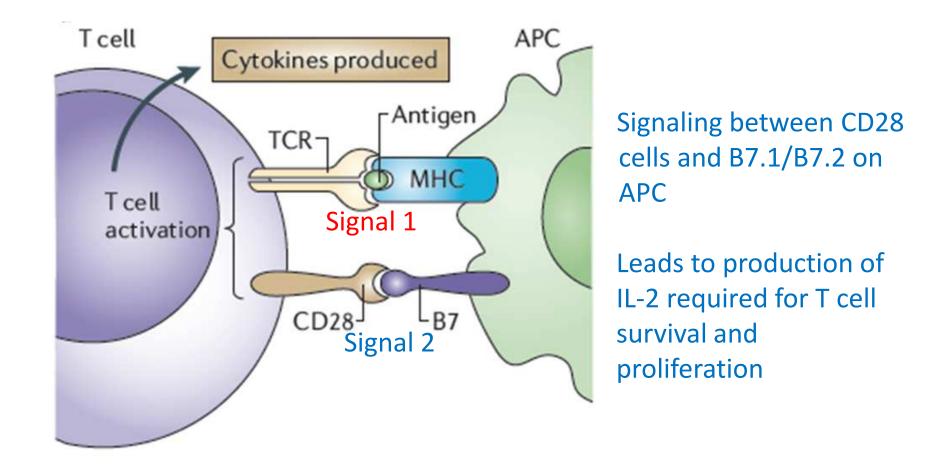




- Function: Antigen-specific killing and orchestrate an immune response through direct killing (CD8⁺) and cytokine release (CD4⁺)
 - Two main types: CD4⁺ and CD8⁺ T cells that recognize antigens presented in MHC Class II and Class I respectively
- Location: Immune sites (lymph nodes, spleen, tonsils and thymus) and sites of inflammation
- Key Markers: CD3⁺, CD4⁺, CD8⁺, CD28⁺
- CD152⁺ (CTLA-4) and PD1

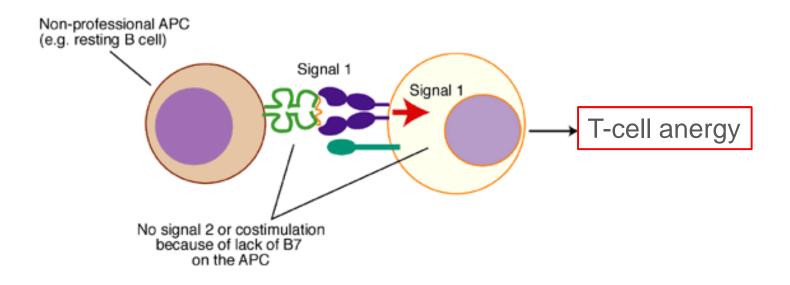
B-cells

- Function: Antigen-specific production of antibodies
 - They also help propagate an immune response by presenting antigens and producing cytokines
- Location: immune sites (lymph nodes, spleen, tonsils and thymus) and sites of inflammation
- Key Markers: CD19⁺, CD20⁺, CD21⁺, HLA Class II



Antigen

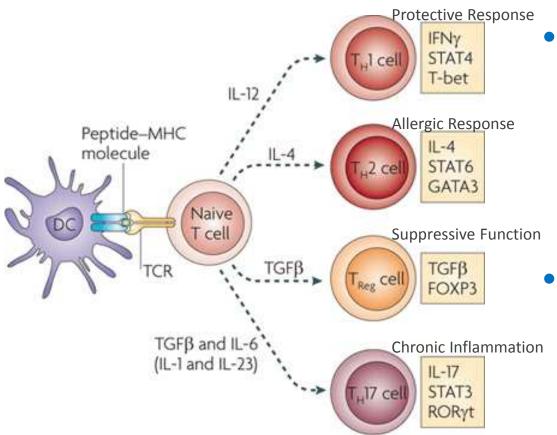
- Antigen (Ag): molecule recognized by receptors on B and T lymphocytes
- Ags are the driving force of adaptive immunity which responds to Ag stimulation with proliferation and differentiation
- Lymphocytes are extremely sensitive to their specific Ags
- T and B cell receptors bind to their cognate Ags with a high degree of specificity
 - The part of the antigen bound by receptor is the antigenic determinant or EPITOPE (not the whole antigen)



T-cell Activation

Anergy

Initial signal for T cell activation
In the absence of signal 2, T cells will not be activated, and may undergo under **anergy** or **apoptosis**

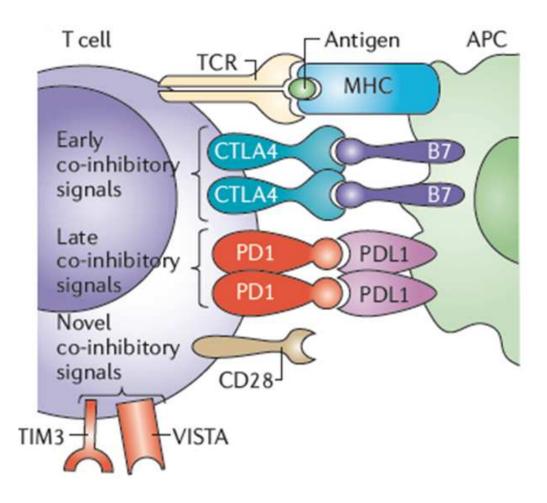


APCs and MHC Complex

- MHC class I (HLA-A/B/C)
 MHC class II (HLA-DR)
 - Typically peptides derived from endogenous proteins
- - Typically peptides derived from exogenous proteins

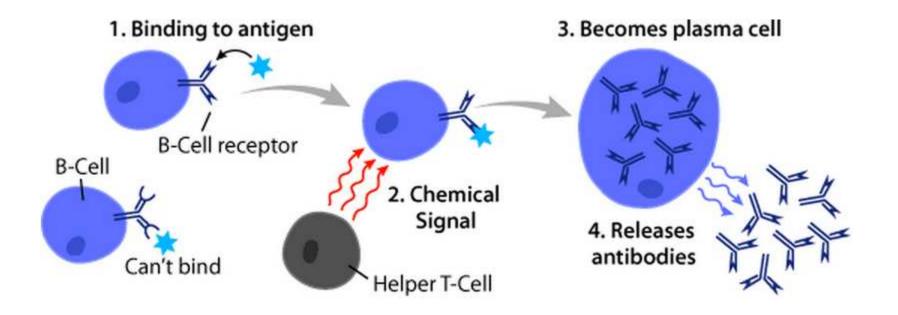
Tissue	MHC class I	MHC class II
Lymphoid tissues		
T cells	+++	+*
B cells	+++	+++
Macrophages	+++	++
Dendritic cells	+++	+++
Epithelial cells of the thymus	+	+++
Other nucleated cells		
Neutrophils	+++	-

T-cell Differentiation



Nature Reviews | Immunology

- DC maturation results in the development of functionally different effector DC subsets that selectively promote T helper 1 (T_H 1)-, T_H 2- or regulatory T-cell responses.
- The differentiation of each of these effector T cell subsets is controlled by distinct sets of transcription factors



Inhibitory Signals

B-cell Activation

 Bind an antigen, receive help from a cognate helper T-cell, and differentiate into a plasma cell that secretes large amounts of antibody

Secreted Antibodies

• Antibodies themselves are not inherently destructive to pathogens.

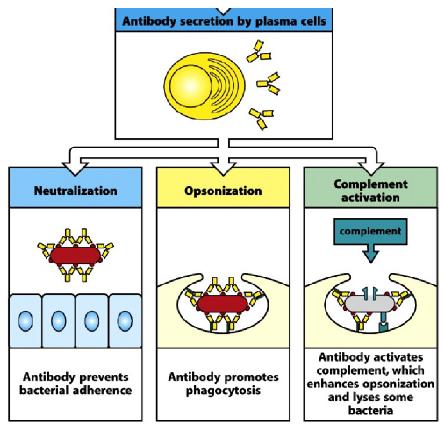


Figure 9-1 Immunobiology, 7ed. (© Garland Science 2008)

Summary

- There are four key "organs" of the immune system: *Bone Marrow, Lymph Node, Spleen and Thymus* that give it system wide access to protect against a variety of targets
- There are five major immune cells: Dendritic cells, Macrophages, NK Cells, T cells and B cells
- There are two broad categories of the immune system: Innate Immunity (antigen non-specific) and Adaptive Immunity (antigen-specific)
- Innate and adaptive immunity are equally important and can not properly respond to a pathogen invasion without another.

Summary

- The immune response involves a series of specific steps starting from detection of a target to its elimination and finally returning the body to its <u>normal state</u>
- T cells are required to potently activate B cells to proliferate and synthesize antibodies. T-cells and B-cells must recognize components of the same antigen to interact effectively
- Many disease states, particularly cancer, arise from failed immune responses, and retraining the immune system is the goal of all immunotherapy from vaccination to checkpoint inhibitors

Thank You!

