Society for Immunotherapy of Cancer (SITC)

Immunotherapy for Brain Malignancies Amy B Heimberger M.D. Anderson Cancer Center

Advances in Cancer Immunotherapy[™] - Texas June 19, 2015

Making Cancer History"

Pharmaceutical/Biomarker Financial Disclosures

- Laboratory and Clinical Studies: Merck
- Paid Consultant: Celldex Therapeutics, Bristol Myers Squibb, Caris Life Sciences
- Stock/Equity: Celldex Therapeutics, Caris Life Sciences
- Licensing Fees: Celldex Therapeutics
- Strategic Partnerships: Immatics
- Patents: EGFRvIII peptide vaccine (CDX-110), WP1066, immune modulatory miRNA portfolio, LUNAR-301

Myths of CNS Immunology

Making Cancer History*

Immune cells do not gain access to the CNS secondary to the blood brain barrier

There is no lymphatic drainage from the brain

Making Cancer History*

What is needed for an optimal antitumor immune therapeutic response?

•Immunological target (i.e. antigen) or a response that is not dependent on this (NK cells)

EGFRvIII, IDH1 mutant, IMA-950, CMV pp65, HSP, tumor homogenates

•Activate the T cell signal

 4-1BB antibodies/aptamers, OX40 antibodies, pro-inflammatory cytokines (GM-CSF, IFN-γ, IL-12, IL-15), KLH, TLR agonists (CpG, poly IC), dendritic cells, viral therapy, STING agonists

- •Adequate trafficking to and infiltration of the tumor site
 - Chemokine (fractalkine receptor/CX3CR1)
- •Maintenance of T cell effector function

 Inhibition of immune suppressive cytokines (TGF-β, IL-10), STAT3 inhibitors, checkpoint inhibitors

Mechanisms of Immune Activation and Inhibition

Making Cancer History*

Epidermal Growth Factor Receptor Mutation

Making Cancer History"

LEU-GLU-GLU-LYS-LYS-VAL-CYS-...-PRO-ARG-ASN-TYR-VAL-VAL-THR-ASP-HIS Wild Type Amino Acid Sequence

CTG-GAG-GAA-AAG-AAA-GTT-TGC-...-CCC-CGT-AAT-TAT-GTG-GTG-ACA-GAT-CAC Wild Type cDNA Sequence

CTG-GAG-GAA-AAG-AAA-GGT-AAT-TAT-GTG-GTG-ACA-GAT-CAC Variant III cDNA Sequence

LEU-GLU-GLU-LYS-LYS-GLY-ASN-TYR-VAL-VAL-THR-ASP-HIS **PEP-3** Variant III Amino Acid Sequence

First patient treated in 7/04

Progression free survival and overall survival in ACTIVATE

PFS: 14.2 (CI95: 9.9, 17.6) months

OS: 26.0 (Cl95: 21.0, 47.7) months

Heimberger/Sampson, JCO, 2010

TMZ induced lymphopenia enhances immunological responses: ACT II

Sampson/Heimberger, Neuro-Oncology, 2011

Summarized Clinical Efficacy of the PEP-3-KLH Vaccine in Glioblastoma Patients

Making Cancer History*

	Clinical Sites	Median PFS from Diagnosis (months)	Median OS from Diagnosis (months)	OS at 24 Months
ACT III (n=65)	31	12.3	24.3*	50%*
ACT II (n=22)	2	15.3	24.4	50%
ACTIVATE (n=18)	2	14.2	24.6	50%
Matched historical control (n=17) ¹	1	6.4	15.2	6%
Standard of care radiation/TMZ (n=287) ²	85	6.9	14.6	27%

In all three rindopepimut trials, study treatment began ~3 months post-diagnosis

 Historical controls were treated at M.D. Anderson and matched for eligibility (EGFRvIII-positive, KPS ≥ 80%, complete resection, radiation/TMZ and without progression through ~3 months postdiagnosis)

- Confidence intervals for median PFS and OS for vaccinated patients do not overlap with those for historical control and standard of care
- Mature data for ACT II and ACTIVATE are presented
- 1. Sampson et al. J. Clin Oncol 2010 Nov 1 28(31), 4722-9
- 2. Stupp et al. N. Engl. J Med. 2005, 352, 987-96
- * ACT III survival data not yet final

Making Cancer History*

Mechanism of treatment failure: antigenic loss

Pre-Vaccination

Post Vaccination Recurrence

Magnification is 250X

EGFR

EGFRvIII

Making Cancer History*

NEURO-ONCOLOGY

Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma

Duane A. Mitchell, Weihua Xie, Robert Schmittling, Chris Learn, Allan Friedman, Roger E. McLendon, and John H. Sampson

Division of Neurosurgery, Department of Surgery (D.A.M., W.X., R.S., C.L., A.F., J.H.S.), and Department of Pathology (R.E.M., J.H.S.), Preston Robert Tisch Brain Tumor Center at Duke; Duke University Medical Center, Durham, NC, USA

CMV Antigens are expressed in Glioblastoma Patient Tumors

Table 1. Summary of HCMV detection in GBM specimens

нсми	GBM Tissue Specimen	Primary GBM Cultures
IE1 IHC	42/45 (93%)ª	4/4 (100%)
pp65 IHC	(30/33 (91%) ^a	12/12 (100%)
HCMV DNA ISH	16/16 (selected cases)	not tested
gB PCR	21/34 (61.7%) [♭]	13/17 (70.6%)
IE1 PCR	8/34 (24%) ^b	9/17 (53%)

Immunotherapy targeting CMV pp65

Mitchell, Nature, 2015

Rationale for Checkpoint Inhibition in Glioma Patients

Making Cancer History*

Preclinical

Wainwright, CCR, 2014

ASCO 2013 NEJM 6/2/2013

Immune checkpoints are operational within GBM

Making Cancer History*

% of PD-L1 cells	% GBM patients (n=99)
>1	85.9
>5	35.9
>10	13.0
>25	1.1

Immune suppression is enriched in the mesenchymal subset

Group

Immune sup	pressor/gene	Number of cases; % mRNA over expression				
		Proneural	Mesenchymal	Classical	Neural	
		n=141	n=160	n=147	n=96	
	1					
Immune	Galectin-3/LGALS3	2; 1	28; 18	13; 9	6; 6	
suppressive	VEGF/VEGFA	16; 11	26; 16	32; 22	3; 3	
cytokines and	IL-10/IL10	4; 3	39; 24	5; 3	13; 14	
checkpoints	IL-23/IL23A	4; 3	21; 13	12; 8	5; 5	
	TGF-β/TGFB1	5; 4	50; 31	14; 10	2; 2	
	PD-1/SPATA2	28; 20	14; 9	58; 39	27; 28	
	PD-L1/PDL1	0; 0	25; 16	14; 10	5; 5	
	CTLA-4/CTLA-4	12; 9	30; 19	8; 5	11; 11	
Tumor-supportive	CSF-1/CSF	3; 2	30; 19	4, 3	1, 1	
macrophage	CCL2/CCL2	5; 4	53; 33	9; 6	7; 7	
chemotactic and	CCL-22/CCL22	10; 7	33; 21	17; 12	12; 13	
skewing	CD163/CD163	8; 6	60; 38	2; 1	11; 11	
molecules	CD204/MSR1	5; 4	53; 33	3; 2	8; 8	
	MIC-1/GDF15	7; 5	43; 27	25; 17	14; 15	
	Arginase/ARG1	9; 6	23; 14	16; 11	22; 23	
	CD47/CD47	15; 11	30; 19	10; 7	19; 20	
Immune	IL-6/IL6	32; 23	83; 52	16; 11	15; 16	
suppressive	gp130/IL6ST	0; 0	25; 16	17; 12	8; 8	
signaling	Jak2	6; 4	22; 14	9; 6	11; 11	
pathways	STAT3/STAT3	8; 6	31; 19	26; 18	0; 0	
	Pim-1/PIM1	4; 3	44; 28	13; 9	6; 6	
	SOCS3/SOCS3	5; 4	36; 23	10; 7	3; 3	
	STAT5A/STAT5A	4; 3	48; 30	10; 7	2; 2	
Markers of Tregs	CD4/CD4	5; 4	57; 36	0; 0	9; 9	
	CD278/ICOS	8; 6	23; 14	9; 6	9; 9	
	IDO/IDO1	6; 4	25; 16	14; 10	4; 4	

Doucette, CIR, 2013

Distinct glioblastoma subtypes may benefit from immunotherapy

Prins, Clinical Cancer Research 2011

Making Cancer History"

Key Biomarker Issues for Immune Therapeutic Clinical Trials

- There is no universally accepted peripheral blood immune assays that correlates with clinical efficacy/polyvalent immune responses.
 Monitoring will need to be tailored to the select agents
- •Peripheral blood monitoring does not take into account effector function at the tumor site.
- •No vetted imaging approach for determining the presence or absence of an immune response in the tumor microenvironment.
- •Assumption of generalized immune assays for monitoring responses (harmonization)
- •Immunotoxicity
- •Radiographic monitoring of immune responses

Immune Checkpoint Clinical Trials in GBM

Making Cancer History*

Monitoring the GBM-infiltrating immune responses

10 CD8+ IFNg+ 100 = IFNg+ -100 = Healthy 15.1 11.3 33.8 Donor 80 " 300 1 60 " 200 " 4) | CD4 + 10 100 20 ' 49.6 10³ "° 10² 10+ 10⁰ . 10² . 10³ 101 10⁻⁴ 10⁰ 10² 10³ 10¹ 10+ 10+3 200 IFNg+ ₀ª_]CD8+ GBM blood IFNg+ 300 160 1 20.9 21 .6 6.1 102 7 200 100 ' CD4+ 10¹ 100 1 60 ' 33.4 10 10⁰ 10⁸ ю⁴ 10⁰ 10¹ 10² 10³ 10+ 10⁰ 10¹ 10² 10⁸ 10⁻⁴ 10 120 CD8+ T infiltrating IFNg+ IFNg+ 3.7 10⁸ च ee = T cells 8.8 13.9 GBM -D ' 60 CD4+ T 20 30 1.6 10⁰ . 10² 100 102 10⁵ 100 102 10 10⁺ 10¹ 10.9 10+ 10 10 10¹

Making Cancer History"

Making Cancer History"

Immune suppression in Malignant Glioma Patients

Mechanisms

- Cytokines IL-10, TGF, PGE2
- Lack of functional antigen presenting cells i.e. immunosuppressive microglia/macrophages (microglia, paucity of myeloid dendritic cells)
- Induction of T cell apoptosis (FasL; Galectin-3)
- Treg recruitment to the tumor
- Increase expression of immune regulatory molecules (B7-H1, HLA-G)
- Loss of antigen
- Decreased B2 microglobulin and/or HLA
- Induction of inappropriate T-helper function (skewing to Th2)
- Cancer stem cells/initiating cells
- Tumor hypoxia/HIF-1α

Manifestations

- Decreased delayed type hypersensitivity responses to recall antigens
- Diminished antibody responses
- Impaired T cell proliferation and responses to IL-2
- Impaired cytotoxic/effector T cell responses
- T cell anergy/unresponsiveness

Making Cancer History"

The STAT3 pathway is a key regulatory pathway in global immune suppression

- pSTAT3 becomes active in immune cells in the presence of malignancy (Yu, Nature Rev Immunology, 2007).
- Induces the expression of immune suppressive cytokines
- STAT3 activity turns off antigen presenting cells like dendritic cells.
- STAT3 suppresses macrophage/microglia activation and function; induces M2 macrophages.
- STAT3 is a transcriptional regulator of FoxP3 in Tregs (Zorn, Blood, 2008).
- Ablating STAT3 in hematopoietic cells in mice resulted in marked enhancement of immune responses and marked anti-tumor activity (Kortylewski, Nat Med, 2005).
- STAT3 blockade in the immune cells from glioma patients can restore T cell proliferation and responses.
- Can be found in the peripheral blood of malignant glioma.

The STAT3 pathway is active in many cancers and especially within malignant gliomas

Making Cancer History*

- Constitutive activation is observed in majority of many malignancies or can be induced by EGF, PDGF, IL-6, IFN, CMV, TLR-9 (among others).
- Upon phosphorylation of tyrosine⁷⁰⁵ (p-STAT3), dimerization occurs and subsequent nuclear translocation.
- The p-STAT3 is a potent transcriptional factor that regulates key factors that mediate tumor proliferation and survival (e.g., cyclin D1, p53, BCL-XL), migration and invasion (e.g., MMP-2, MMP-9), and angiogenesis by VEGF, basic fibroblast growth factor, and HIF-1α.
- Is a negative prognostic factor for survival.
- Shown to mediate the proneural to mesenchymal transition .
- Maintains "stemness" (Sherry, Stem Cells, 2009).

STAT3 positively and significantly correlates with glioma grade

Table 3. Proportion of p-STAT3-positive cases according to pathology and WHO tumor grade.

Pathology	p-STAT3 >0/Total (%)	*Mean (SD)	(Min, Max)
0	6/16 (38%)	4.3 (7.7)	(0.0, 23.5)
MOA	6/6 (100%)	67.9 (55.2)	(9.0, 136.0)
AO	6/15 (40%)	17.5 (41.0)	(0.0,153.0)
AMOA	7/12 (58%)	13.3 (27.0)	(0.0, 85.5)
LGA	0/3 (0%)	0	0
AA	9/17 (53%)	5.6 (7.6)	(0.0, 23.0)
GS	5/7 (71%)	23.1 (34.1)	(0.0, 91.0)
GBM	27/53 (51%)	11.7 (24.4)	(0.0, 133.5)

Abbreviations: AA, anaplastic astrocytoma; AMOA, anaplastic mixed oligoastrocytoma; AO, anaplastic oligodendroglioma; GS, gliosarcoma; LGA, low-grade astrocytoma; O, oligodendroglioma; MOA, mixed oligoastrocytoma. *The mean calculation was based on the mean p-STAT3 value.

Abou-Ghazal, Clin Cancer Res. 2008

Making Cancer History"

WP1066: Small molecule inhibitor of STAT-3

Making Cancer History*

THE UNIVERSITY OF TEXAS DAnderson CenterWP1066 demonstrates minimal in vivo toxicity

Making Cancer History*

Systemic histopathological effects of WP1066 in C57BL/6 mice Table 1

Drug	Adminis- tration	Total (mg/kg)	Pathology of Systemic Organs							
	Route		Spleen	Thymus	Lung	Heart	Kidney	Brain	Liver	GI
Vehicle	i.p.	N/A	1/10 ^b , 2/10ª	0/8	0/9	0/10	0/10	0/10	1/10 ^b	4/10 ^f
WP1066	i.p.	20	4/5ª	0/7	1/7 ^b	1/7 ^d	2/7 ^b	0/7	4/7 ^b	1/6 ^b , 2/6 ^f
WP1066	i.p.	10	4/10ª	0/8	1/10 ^{ae}	1/10 ^b	3/10 ^b	0/10	1/10°, 2/10 b	1/9 ^b , 1/9 ^f
Vehicle	o.g.	N/A	3/10ª	1/8 ^b	0/10	0/10	0/10	0/10	0/10	1/10 ^b
WP1066	o.g.	40	0/5	0/5	0/5	0/4	1/5	0/5	1/5 ⁹ , 2/5 ^b	0/4

- hemosiderin staining within macrophages а
- autolysis b
- chronic inflammatory infiltrate in connective tissue adjacent to the liver С
- likely post-mortem bacterial endocarditis d
- pulmonary congestion е
- reactive lymphoid follicles with germinal center f
- chronic inflammation q

Making Cancer History"

A Phase I Trial of WP1066: NCT01904123

	Dose Escalation Schedule					
	Dose Level	Dose of WP1066*				
	Level 1	0.08				
	Level 2	0.15				
	Level 3	0.3				
	Level 4	0.6				
	Level 5	1.15				
	Level 6	2.3				
*	Doses are stated as exact dose (e.g., mg/kg)					

Grade 1 adverse event	the previous dose.
irst grade 2 adverse event	No change; enroll next patient in next higher dose level at double the previous dose.
cond grade 2 adverse event	Expand current cohort to enroll a total of 3 patients; future dose- escalation will occur in 33% increments.
rst grade 3 non-DLT toxicity	Expand current cohort to enroll a total of 3 patients; future dose- escalation will occur in 33% increments
First DLT	Expand current cohort to enroll a total of 3 patients; if no further DLT is noted among these three patients, 3 more patients will be added at this dose level; if only one of the 6 patients experiences a DLT, the dose may be escalated by 25% in the next cohort of 6 patients.

Change to dose escalation schema No change; enroll next patient in next higher dose level at double

Key Features:

Toxicity observed in 1 patient

Dose escalation proceeds according to an accelerated titration design

Biomarker endpoints include pharmacokinetic bioavailability of WP1066, PBMC p-STAT3 levels, peripheral blood Tregs frequency, and T cell effector responses

Retrospective analysis of GBM subtype (mesenchymal, proneural, classical, neural) with treatment response to WP1066

Measurement of effect includes radiographic responses using RECIST_{immune} criterion

The primary objective is to determine MTD, safety and tolerability

Secondary objectives include: pharmacokinetic, immune, radiographic, PFS and OS parameters

Total number of patients: 21

miR-124 modulates multiple nodes in the STAT3 signaling pathway

miR-124 blocks glioma growth via an immunological process

Making Cancer History"

Screening approach for checkpoint inhibition

Candidate miR	RNA22	microRNA.org	RNA22	microRNA.org
	PD-1	PD-1	CTLA-4	CTLA-4
138	A: 4 binding sites; B: 1 binding site; C: 3 binding sites	1 binding site	B: 3 binding sites; C: 1 binding site	None
370A: 1 binding site; C: 1 binding site		3 binding sites	A: 1 binding site B: 1 binding site C: 1 binding site	1 binding site
211	A: 2 binding sites C: 2 binding sites	1 binding site	A: 1 binding site B: 1 binding site C: 1 binding site	None
16	A: 1 binding site C: 1 binding site	2 binding sites	A: 1 site C: 1 site	None
410	None	1 binding site	None	1 binding site
134	None	1 binding site	C: 1 binding site	None
374b	None	2 binding sites	None	None
200a	None	1 binding site	None	None
874	A: 2 binding sites C: 2 binding sites	2 binding sites	None	None
195	A: 2 binding sites C: 2 binding sites	2 binding sites	None	None
424	None	3 binding sites	None	None
328	A: 3 binding sites B: 2 binding sites C: 3 binding sites	2 binding sites	None	None
15b	A: 2 binding sites C: 2 binding sites	2 binding sites	None	None
374a	None	1 binding site	None	None

miR-138 inhibits both CTLA-4 and PD-1

Making Cancer History"

In vivo activity of miR-138

Making Cancer History"

Immune modulatory properties of miR-138

Making Cancer History*

Making Cancer History*

Challenges/Opportunities for Immunotherapy

•Does the immune system really prevent the development of gliomas? If so, what is the trigger.

•Uncharacterized immune suppressive mechanisms (exosome)

•Immune suppressive features of low grade glioma

•Cost and production ease of GMP cellular products

- •Target only membrane expressed targets
- •Redundancy of immune suppression
- •Assumption of generalized immune assays for monitoring responses (harmonization)
- •Polyvalent immune response

•Immunotoxicity

Synergy with conventional chemotherapeutics/radiation/steroids
Radiographic monitoring of immune responses