Tumor-Infiltrating Lymphocytes and Adoptive Immunotherapy

Mark B. Faries, MD, FACS

Professor of Surgery

Chief, Donald L. Morton Melanoma Research Program

Program Director, JWCI Complex General Surgical Oncology Fellowship

Director, Therapeutic Immunology

Outline

- T-cells within the immune system and cancer
- Therapeutic use of T-cells
- Adoptive Immunotherapy
 - Straight-up
 - Genetically Modified T cells
 - Bispecifics

Trial Patient Outcomes Over the Years

Korn et al. *J Clin Oncol*. Feb 1 2008, 527-34.

 Natural immune recognition of melanoma is common

The Immune System and Cancer

Is control of the Immune System like driving a car?

Is control of the Immune System like driving a car?

No...

Adoptive T-Cell Therapy

1) The working model

2) Modifications

TIL: Current Standard Procedure

TIL: Early Clinical Data

Treatment of Patients With Metastatic Melanoma With Autologous Tumor-Infiltrating Lymphocytes and Interleukin 2

Journal of the National Cancer Institute, Vol. 86, No. 15, August 3, 1994 Steven A. Rosenberg, John R. Yannelli, James C. Yang, Suzanne L. Topalian, Douglas J. Schwartzentruber, Jeffrey S. Weber, David R. Parkinson, Claudia A. Seipp, Jan H. Einhorn, Donald E. White*

Table 2. Number of patients responding to treatment with TILs plus IL-2 and duration of response*

						Respons	e to treat	ment					
		No cyclophosphamide				Plus cyclophosphamide				Total			
	No. of patients			No. of patients			No. of patients						
	Total	CR	PR	% CR + PR	Total	CR	PR	% CR + PR	Total	CR	PR	% CR + PR	
Prior IL-2		1	2	27	17	0	6	35	28	1	8	32	
No prior IL-2	18	3	3	33	40	1	13	35	58	4	16	34	
Total	29	4	5	31	57	1	19	35	86	5	24	34	
					D	uration o	f respon	se, mo				_	
				No cyclophos	sphamide			Plus cyclop	phosphamide				
				CR	PR		(CR	PR				
Prior IL-2 No prior IL-2				23 46+, 38, 21+	4, 1 7, 4,	2			8, 7, 6, 5, 53+, 9, 7,	5, 1 7, 4, 4			

*CR = complete response. PR = partial response.

TIL: Early Clinical Data

Cancer Regression and Autoimmunity in Patients After Clonal Repopulation with Antitumor Lymphocytes

Mark E. Dudley,¹ John R. Wunderlich,¹ Paul F. Robbins,¹ James C. Yang,¹ Patrick Hwu,¹ Douglas J. Schwartzentruber,¹ Suzanne L. Topalian,¹ Richard Sherry,¹ Nicholas P. Restifo,¹ Amy M. Hubicki,¹ Michael R. Robinson,² Mark Raffeld,³ Paul Duray,³ Claudia A. Seipp,¹ Linda Rogers-Freezer,¹ Kathleen E. Morton,¹ Sharon A. Mavroukakis,¹ Donald E. White,¹ Steven A. Rosenberg^{1*}

25 OCTOBER 2002 VOL 298 SCIENCE

Table 1. Patient demographics, treatments received, and clinical outcomes.

Patient	Age/Sex		Treatn	nent*		Sites of evaluable metastases	Response duration() (months)	Autoimmunity
		Cells infused† (×10 ⁻¹⁰)	CD8/CD4 phenotype‡ (%)	Antigen specificity§	IL-2 (doses)			
1	18/M	2.3	11/39	Other	9	Lymph nodes (axillary, mesenteric, pelvic)	PR¶ (24+)	None
2	30/F	3.5	83/15	MART-1, gp100	8	Cutaneous, subcutaneous	PR (8)	Vitiligo
3	43/F	4.0	44/58	gp100	5	Brain, cutaneous, liver, lung	NR	None
4	57/F	3.4	56/52	gp100	9	Cutaneous, subcutaneous	PR (2)	None
5	53/M	3.0	16/85	Other	7	Brain, lung, lymph nodes	NR-mixed	None
6	37/F	9.2	65/35	Other	6	Lung, intraperitoneal, subcutaneous	PR (15+)	None
7	44/M	12.3	61/41	MART-1	7	Lymph nodes, subcutaneous	NK-mixed	Vitiligo
8	48/M	9.5	48/52	gp100	12	Subcutaneous	NR	None
9	57/M	9.6	84/13	MART-1	10	Cutaneous, subcutaneous	PR (10+)	Vitiligo
10	55/M	10.7	96/2	MART-1	12	Lymph nodes, cutaneous, subcutaneous	PR¶ (9+)	Uveitis
11	29/M	13.0	96/3	MART-1	12	Liver, pericardial, subcutaneous	NR-mixed	Vitiligo
12	37/F	13.7	72/24	MART-1	11	Liver, lung, gallbladder, lymph nodes	NR-mixed	None
13	41/F	7.7	92/8	MART-1	11	Subcutaneous	NR	None

Lymphodepletion

Fludarabine Modulates Immune Response and Extends In Vivo Survival of Adoptively Transferred CD8 T Cells in Patients with Metastatic Melanoma

Herschel Wallen*, John A. Thompson, J. Zachary Reilly, Rebecca M. Rodmyre, Jianhong Cao, Cassian Yee March 2009 | Volume 4 | Issue 3 | e4749

Lymphodepletion

Adoptive Cell Therapy for Patients With Metastatic Melanoma: Evaluation of Intensive Myeloablative Chemoradiation Preparative Regimens

JOURNAL OF CLINICAL ONCOLOGY

VOLUME 26 · NUMBER 32 · NOVEMBER 10 2008

Mark E. Dudley, James C. Yang, Richard Sherry, Marybeth S. Hughes, Richard Royal, Udai Kammula, Paul F. Robbins, JianPing Huang, Deborah E. Citrin, Susan F. Leitman, John Wunderlich, Nicholas P. Restifo, Armen Thomasian, Stephanie G. Downey, Franz O. Smith, Jacob Klapper, Kathleen Morton, Carolyn Laurencot, Donald E. White, and Steven A. Rosenberg

TIL: Clinical Responses

Other Tumors

Complete Regression of Metastatic Cervical Cancer After Treatment With Human Papillomavirus–Targeted Tumor-Infiltrating T Cells

Sanja Stevanović, Lindsey M. Draper, Michelle M. Langhan, Tracy E. Campbell, Mei Li Kwong, John R. Wunderlich, Mark E. Dudley, James C. Yang, Richard M. Sherry, Udai S. Kammula, Nicholas P. Restifo, Steven A. Rosenberg, and Christian S. Hinrichs

JOURNAL OF CLINICAL ONCOLOGY MAY 10 2015

Technical challenges: ("GMP")

Timeline

- Tumor reactivity
- Interleukin-2

Tumor-Infiltrating Challe

Technical challenge

Cell Production Facility

Cell Production Facility

Technical challenges: ("GMP")

• Timeline

- Tumor reactivity
- Interleukin-2

Technical challenges: ("GMP")

- Technical challenges: ("GMP")
- Timeline T-Cell
- Tumor reactivity
- Interleukin-2

Modified T-cells: Antigens

Transgenic TCR

Adoptive Transfer of MART-1 T-Cell Receptor Transgenic Lymphocytes and Dendritic Cell Vaccination in Patients with Metastatic Melanoma

Thinle Chodon^{1,18}, Begoña Comin-Anduix^{2,6}, Bartosz Chmielowski^{1,6}, Richard C. Koya^{2,6,18}, Zhongqi Wu¹, Martin Auerbach⁵, Charles Ng¹, Earl Avramis¹, Elizabeth Seja¹, Arturo Villanueva¹, Tara A. McCannel⁷, Akira Ishiyama², Johannes Czernin^{5,6}, Caius G. Radu^{5,6}, Xiaoyan Wang¹, David W. Gjertson³, Alistair J. Cochran³, Kenneth Cornetta¹⁴, Deborah J.L. Wong¹, Paula Kaplan-Lefko¹, Omid Hamid¹⁰, Wolfram Samlowski¹⁵, Peter A. Cohen¹⁶, Gregory A. <u>Daniels¹¹ Bilay Mukherii¹⁷ Lili Yanc^{4,6,8}</u>

Jerome A. Zack^{1,6,8}, Donald B. Kohn^{4,6,8}, James R. H David Baltimore¹³, James S. Economou^{2,4,5,6}, and Ar

Clin Cancer Res; 20(9) May 1, 2014

Transgenic TCR

A Pilot Trial Using Lymphocytes Genetically Engineered with an NY-ESO-1-Reactive T-cell Receptor: Long-term Follow-up and Correlates with Response

Paul F. Robbins¹, Sadik H. Kassim¹, Thai L.N. Tran², Jessica S. Crystal¹, Richard A. Morgan¹, Steven A. Feldman¹, James C. Yang¹, Mark E. Dudley¹, John R. Wunderlich¹, Richard M. Sherry¹, Udai S. Kammula¹, Marybeth S. Hughes¹, Nicholas P. Restifo¹, Mark Raffeld³, Chyi-Chia R. Lee³, Yong F. Li¹, Mona El-Gamil¹, and Steven A. Rosenberg¹

Clin Cancer Res; 21(5) March 1, 2015

C Bone Marrow-Biopsy Specimens

Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia

The NEW ENGLAND JOURNAL of MEDICINE August 10, 2011,

Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma and Indolent B-Cell Malignancies Can Be Effectively Treated With Autologous T Cells Expressing an Anti-CD19 Chimeric Antigen Receptor

James N. Kochenderfer, Mark E. Dudley, Sadik H. Kassim, Robert P.T. Somerville, Robert O. Carpenter, Maryalice Stetler-Stevenson, James C. Yang, Giao Q. Phan, Marybeth S. Hughes, Richard M. Sherry, Mark Raffeld, Steven Feldman, Lily Lu, Yong F. Li, Lien T. Ngo, Andre Goy, Tatyana Feldman, David E. Spaner, Michael L. Wang, Clara C. Chen, Sarah M. Kranick, Avindra Nath, Debbie-Ann N. Nathan, Kathleen E. Morton, Mary Ann Toomey, and Steven A. Rosenberg

JOURNAL OF CLINICAL ONCOLOGY Published Ahead of Print on August 25, 2014

Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma and Indolent B-Cell Malignancies Can Be Effectively Treated With Autologous T Cells Expressing an Anti-CD19 Chimeric Antigen Receptor

- 15 patients (9 DLBCL, 6 indolent B-cell malig.)
- 1 Death and several neurologic toxicities
- 4/7 DLBCL with CR, 2 PR, 1 SD
- Overall RR: 12/13 (92%) (9 responses ongoing)

Time Since Infusion (days)

CAR T-Cells: Toxicity

Cytokine Release Syndrome

Case Report of a Serious Adverse Event Following the Administration of T Cells Transduced With a Chimeric Antigen Receptor Recognizing *ERBB2*

Richard A Morgan¹, James C Yang¹, Mio Kitano¹, Mark E Dudley¹, Carolyn M Laurencot¹ and Steven A Rosenberg¹ *Molecular Therapy* vol. 18 no. 4, 843–851 apr. 2010

- 39 year-old with metastatic colorectal cancer
- 100 billion ERBB2 CAR T cells
- 15 minutes after infusion, respiratory distress, hypotension
- Died 5 days later

CAR T-Cells:"On Target – Off Tumor"

T Cells Targeting Carcinoembryonic Antigen Can Mediate Regression of Metastatic Colorectal Cancer but Induce Severe Transient Colitis

Maria R Parkhurst¹, James C Yang¹, Russell C Langan¹, Mark E Dudley¹, Debbie-Ann N Nathan¹, Steven A Feldman¹, Jeremy L Davis¹, Richard A Morgan¹, Maria J Merino², Richard M Sherry¹, Marybeth S Hughes¹, Udai S Kammula¹, Giao Q Phan¹, Ramona M Lim³, Stephen A Wank³, Nicholas P Restifo¹, Paul F Robbins¹, Carolyn M Laurencot¹ and Steven A Rosenberg¹ *Molecular Therapy* vol. 19 no. 3 mar. 2011

Cytokine Storm in a Phase 1 Trial of the Anti-CD28 Monoclonal Antibody TGN1412

Ganesh Suntharalingam, F.R.C.A., Meghan R. Perry, M.R.C.P., Stephen Ward, F.R.C.A., Stephen J. Brett, M.D., Andrew Castello-Cortes, F.R.C.A., Michael D. Brunner, F.R.C.A., and Nicki Panoskaltsis, M.D., Ph.D.

Toxicity

Clinical Experiences With Anti-CD137 and Anti-PD1 Therapeutic Antibodies

Paolo A. Ascierto^a, Ester Simeone^a, Mario Sznol^b, Yang-Xin Fu^c, and Ignacio Melero^d Seminars in Oncology, Vol 37, No 5, October 2010, pp 508-516

Table 1. Anti	-CD137 Clinical Studies			
		NTC		
Status	Study	Identifier	Phase	Condition
Terminated	A study of BMS-663513 administered in combination with chemotherapy to subjects with advanced solid malignancies	NCT00351325	Phase I	Advanced solid malignancies
Terminated	A study of BMS-663513 in combination with chemoradiation in subjects with non small cell lung carcinoma (NSCLC)	NCT00461110	Phase I/ phase II	NSCLC
Terminated	Study of BMS-663513 in patients with advanced cancer	NCT00309023	Phase I	Solid tumors
Withdrawn	Combination of anti-CD137 and ipilimumab in patients with melanoma	NCT00803374	Phase I	Melanoma
Completed	Phase II, second-line melanoma—RAND monotherapy	NCT00612664	Phase II	Melanoma

	Target	Cancers	Generation
	A-folate receptor	Ovarian	1
	CAIX	Renal	1,2
Ovarian Cancer	CD19	B-cell, CLL, B-ALL, follicular lymph,	1,2
	CD20	B-cell, Mantle,	1,2,3
A Phase I Study on <i>I</i>	CD22	B-cell	2
T Cells for Ovarian (CD30	Lymphoma, Hodgkin	1
Michael H. Kershaw, ^{1,3,4} Jennif	CD33 AML		2
Sharon A. Mavroukakis, ¹ Donal	CD44v78	Cervical	2
Clara C. Chen, ² James C. Yang	CEA	Breast, Colon	1,2
Clin Cancer Res 2006;12(20) (EGP-2	Multiple	1
Neuroblastoma	EGP-40	Colon	1
	Erb-B2	Colon, Breast, meduloblastoma, glioblastoma, prostate, osteo	1,2
Antitumor activity and	Erb-B2,3,4	Breast	1,2
T cells in patients with	FBP	Ovarian	1
Chrystal U. Louis,1-3 Barbara Savo	Fetal acetylcholine R	Rhabdomyosarcoma	1
Heidi V. Russell, ^{2,3} Oumar Diouf, ^{1,}	GD2	Neuroblastoma	1,3
BLOOD, 1 DECEMBER 2011 • VOLUME 11	GD3	Melanoma	
	IL-13R-a2	Glioblastoma, meduloblastoma	2
Natural Killer Cells	K-light chain	B-cell,	1,2
	LeY	Carcinoma,	1,2
	L1 CAM	Neuroblastoma	1
taNK (tumor-antig	MAGE-A1	Melanoma	
	Mesothin	Various	2,3
	MUC1	Breast, ovary	3
	NKG2D ligands	Various	1

Challenge: Interleukin-2

- High-dose IL-2
 - Toxic/stressful
- Lower dose IL-2?
- Combine with or substitute checkpoint inhibition?

Lymphodepletion

Fludarabine Modulates Immune Response and Extends In Vivo Survival of Adoptively Transferred CD8 T Cells in Patients with Metastatic Melanoma

Herschel Wallen*, John A. Thompson, J. Zachary Reilly, Rebecca M. Rodmyre, Jianhong Cao, Cassian Yee March 2009 | Volume 4 | Issue 3 | e4749

Bispecifics

- BiTE: <u>Bi</u>specific <u>T</u>-cell <u>Engagers</u>
 - Variable heavy/light chain with short linker
 - Specific for: CD3 on one end

- tumor antigen on the other

- CD19, Her2/neu, EpCAM
- Blinatumomab (CD3/CD19)
 - Approved Dec 3, 2014
 - 11% neurologic toxicity
- IMCgp100 in melanoma
 - 17 patients (AACR)
 - 4 CR/PR

BiTE

BITE

