Understanding Checkpoint Inhibitors: Approved Agents, Drugs in Development and Combination Strategies

> Shrish Gadgeel, MD *Karmanos Cancer Institute*

Presentation originally prepared and presented by Michael A. Curran, Ph.D. MD Anderson Cancer Center Department of Immunology

Disclosures

Pfizer, Novartis, Boehringer Ingelheim, Genentech – Consulting Fees

Genentech – Fees for Non-CME/CE Services Received Directly from a Commercial Interest *or their Agent*

Cancer Immunoediting

Carbone, et al Journal of Thoracic Oncology, 2015

Immune Cycle

Chen, Immunity 2013

Immune Suppression Tumor Microenvironment

Ai M., **Curran M.** Immune checkpoint combinations from mouse to man. *Cancer Immunology Immunotherapy*, 2015.

The cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) immunologic checkpoint.

Michael A. Postow et al. JCO 2015;33:1974-1982

Immune Cycle

Chen, Immunity 2013

CTLA-4 Immune Checkpoint Pathway Inhibition Using Ipilimumab: Pooled OS Data From Melanoma Patients

 In a pooled analysis of 12 studies, an OS plateau starts at approximately 3 years with follow-up of up to 10 years in some patients

Biomarkers of Efficacy

- An early increase in lymphocyte and eosinophil count was associated with improved survival in melanoma patients.
 - Delyon J, Ann Oncol 2013.
- Increase number of T regulatory cells in the tumor was associated with response to Ipilimumab.
 - Ji RR, Cancer Immunol Immunother, 2012.

Association of a Neoepitope Signature with a Clinical Benefit from CTLA-4 Blockade.

Snyder A et al. N Engl J Med 2014;371:2189-2199.

Ipilimumab in Other Tumors

 Randomized Phase II trial of carboplatin and paclitaxel with ipilimumab in NSCLC
 Lynch, J Clin Oncol 2012

Ipilimumab with GVAX vaccine in Pancreatic Cancer
 Le, J Immunother 2013.

 Castration resistant Prostate Cancer- Study was negative. Subgroup analysis- Benefit in patients without visceral metastases.

Kwon, Lancet Oncol, 2014

Tremelimumab showed promising results in Mesothelioma

Calabron, Lancet Oncol, 2013

The programmed cell death protein 1 (PD-1) immunologic checkpoint.

Michael A. Postow et al. JCO 2015;33:1974-1982

Immune Cycle

Chen, Immunity 2013

CheckMate 017 (NCT01642004) - Study Design

Patients stratified by region and prior paclitaxel use

- One pre-planned interim analysis for OS
- At time of DBL (December 15, 2014), 199 deaths were reported (86% of deaths required for final analysis)
- The boundary for declaring superiority for OS at the pre-planned interim analysis was P < 0.03

Overall Survival

Symbols represent censored observations

SLIDES ARE THE PROPERTY OF THE AUTHOR. PERMISSION REQUIRED FOR REUSE.

Progression-free Survival

PFS per investigator.

SLIDES ARE THE PROPERTY OF THE AUTHOR. PERMISSION REQUIRED FOR REUSE.

Response Characteristics of Confirmed Responders

OS by PD-L1 Expression

PD-L1 expression as a biomarker

- Generally patients with tumors that have PD-L1 expression have higher likelihood of benefit
- Inconsistent results.
 - Expression of PD-L1 is heterogenous- patchy vs. diffuse, tumor cell vs. stroma, archival vs. fresh
- 10% of the patients with PD-L1 negative tumors derived benefit. Duration of benefit in these patients is similar to the duration of benefit in PD-L1 positive patients.
- Maybe used to select patients in select situations- first line, never smokers.

Higher Mutation Burden Correlates With Benefit from Anti-PD-1

Rizvi, Science 2015

Patients with MMR deficient are more likely to benefit from anti-PD-1 Le, ASCO 2015, abstract LBA 100

Table 2. Differences Between RECIST (version 1.1) and irRC

Factor	RECIST	irRC				
Measurement of tumor burden	Unidimensional	Bidimensional				
Complete response	Disappearance of all target and nontarget lesions; lymph nodes must regress to < 10-mm short axis; no new lesions; requires confirmation	Same as for RECIST				
Partial response	≥ 30% decrease in tumor burden compared with baseline; requires confirmation	≥ 50% decrease in tumor burden compared with baseline; requires confirmation				
Progressive disease	\geq 20% + 5-mm absolute increase in tumor burden compared with nadir; progression of nontarget lesions and/or appearance of new lesions (at any single time point)	≥ 25% increase in tumor burden compared with most recent prior evaluation; new lesions added to tumor burden; requires confirmation				
Stable disease	Any response pattern that does not meet criteria for complete response, partial response, or progressive disease	Same as for RECIST				
Abbreviation: irRC, immune-related response criteria.						

Table 1 Incidence of Immune-Related Adverse Events Associated With Ipilimumab and Pembrolizumab

	Ipilimumab (r (%)	n = 1,498)[8]	Pembrolizumab (n = 411)[39] (%)		
Toxicity	All Grades	Grade 3/4	All Grades	Grade 3/4	
GI (eg, enterocolitis)	33	9.1	1	< 1	
Pneumonitis	< 1	< 1	2.9	< 1	
Hepatitis	1.6	1.1	< 1	<1	
Dermatologic	45	2.6	11-30	0	
Hypophysitis	2.7	2.1	< 1	< 1	
Thyroiditis	1.8	< 1	9.5	< 1	
Nephritis	< 1	< 1	< 1	< 1	

Postow, et al JCO 2015

Treatment-related AEs (≥10% of patients)

	Nivolumab n = 131		Doce n =	etaxel 129	
	Any Grade	Grade 3–4	Any Grade	Grade 3–4	
Total patients with an event, %	58	7	86	55	
Fatigue	16	1	33	8	
Decreased appetite	11	1	19	1	
Asthenia	10	0	14	4	
Nausea	9	0	23	2	
Diarrhea	8	0	20	2	
Vomiting	3	0	11	1	
Myalgia	2	0	10	0	
Anemia	2	0	22	3	
Peripheral neuropathy	1	0	12	2	
Neutropenia	1	0	33	30	
Febrile neutropenia	0	0	11	10	
Alopecia	0	0	22	1	

Table 1. PD-1 and PD-L1 Antibodies in Clinical Development					
Target and Agent	Class				
PD-1					
Nivolumab (MDX1106, BMS-936558)	IgG4 fully human Ab				
Pembrolizumab (MK-3475)	IgG4 engineered humanized Ab				
Pidilizumab (CT-011)	IgG1 humanized Ab				
PD-L1					
BMS935559 (MDX-1105)	IgG4 fully human Ab				
MPDL3280A	IgG1 engineered fully human Ab				
MEDI4736	IgG1 engineered fully human Ab				
MSB0010718C	IgG1 fully human Ab				
PD-1-positive T cells					
AMP-224	Fc of human IgG–PD-L2 fusion				

Abbreviations: Ab, antibody; IgG, immunoglobulin G; PD-1, programmed cell death protein 1; PD-L1, programmed cell death protein 1 ligand.

Why choose to block the PD-1 pathway in addition to CTLA-4?

Blocking one co-inhibitory receptor leads to reciprocal upregulation of the other

CTLA-4 and PD-1 inhibitory signals are non-redundant

PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors

Michael A. Curran^a, Welby Montalvo^a, Hideo Yagita^b, and James P. Allison^{a,1}

^aHoward Hughes Medical Institute, Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and ^bDepartment of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan

Contributed by James P. Allison, January 19, 2010 (sent for review December 17, 2009)

Curran M A et al. PNAS 2010; 107(9):4275-80.

Conversion of the tumor micro-environment from suppressive to inflammatory

Curran M A et al. PNAS 2010; 107(9):4275-80.

Objective response rates in malignant melanoma with checkpoint blockade

	NIVO + IPI (N=314)	NIVO (N=316)	IPI (N=315)
ORR, % (95% CI)*	57.6 (52.0–63.2)	43.7 (38.1–49.3)	19.0 (14.9–23.8)
Two-sided <i>P</i> value vs IPI	<0.001	<0.001	
Best overall response — %			
Complete response	11.5	8.9	2.2
Partial response	46.2	34.8	16.8
Stable disease	13.1	10.8	21.9
Progressive disease	22.6	37.7	48.9
Unknown	6.7	7.9	10.2
Duration of response (months)			
Median (95% CI)	NR (13.1, NR)	NR (11.7, NR)	NR (6.9, NR)

*By RECIST v1.1.

NR, not reached.

Wolchok et al. ASCO 2015

Two year survival: 2010 – standard of care – 18% Ipilimumab (FDA 2010) – 30% Nivolumab (FDA 2014) – 43% Ipi/Nivo (FDA 2015?) - ~90%

Change From Baseline in Tumor Size (RECIST v1.1, Investigator Review)

Change from baseline was evaluated in patients with ≥1 postbaseline tumor assessment. Analysis cutoff date: March 31, 2015.

Ai M., **Curran M.A.** Immune checkpoint combinations from mouse to man. *Cancer Immunology Immunotherapy*, 2015.

4-1BB : Favorable expression profile for immunotherapy

Na	aive Effector	Memory		Table 1 Expre	ssion chara	cteristics of T	NFR and TNF r	nolecules by T	cells and APCs
				Molecule		T cells		AF	PCs
					Naïve	Effector	Memory	Resting	Activated
				CD27	++	+++	++/-	-	B*
evel			HVEN	CD70	-	+++*	-		B, DC, MØ
el no				HVEM	+++	+	+++	B, DC*	B, MØ*
essio		X		LIGHT	-	+++	-	DC	
xpre			- CD27	OX40	-	+++	+/-	-	B, DC*
ve e	X			OX40L	-	+++*	_	-	B, DC, MØ
elati				4-1BB	-	+++	+/-	-	B, DC*
ď			OX40, 4-1BB, CD30	4-1BBL	-	+++*	-	-	B, DC, MØ
				CD30	-	+++	+/-	-	-
				CD30L	-	+++*	-	—	B, MØ
C		4 5 6		Nature Reviews Imn	nunology 3 , 609-620) (August 2003) doi:1	.0.1038/nri1148		
	Days after activat	tion Months		Co-stimulatory T-cell immunity	members of th	ne TNFR family: k	eys to effective		
Figure 0. Concerning of time occurse of expression of as atimulatory TNED family members.				Michael Croff Abo	it the puther				

course of expression of co-stimulatory INFR-family members.

Table 1 | Co-stimulatory and co-inhibitory receptor function in stages of T cell differentiation

Receptor	T cell type	Priming	Cell growth	T _H cell differentiation	Effector function	Survival	Memory
4-1BB	CD4⁺	ND	(+)	ThEO	(+)	(+)	(+)
	CD8⁺	ND	(+)	TcEO	(+)	(+)	(+)
Adapted from	: Molecular m	echanisms of 1	cell co-stimul ر	ation and co-inhi	bition		
Lieping Chen & Dallas B. Flies Nature Reviews Immunology 13, 227-242 (April 2013)							

4-1BB activates NK Cells

CELLULAR IMMUNOLOGY 190, 167-172 (1998) ARTICLE NO. CI981396 NK1.1 Cells Express 4-1BB (CDw137) Costimulatory Molecule and Are Required for Tumor Immunity Elicited by Anti-4-1BB Monoclonal Antibodies Ignacio Melero,* Janet V. Johnston,* Walter W. Shufford,* Robert S. Mittler,* and Lieping Chen*+1 20 -20 Mean Tumor Diameter (mm) в С Α 20 15 -15 Anti-asialoGM1 asialoGM1 15 -Anti-CD8 Anti-NK1.1 10 -10 - Control ig 10 Control mAb Anti-4-1BB mAb 5. A Control mAb 5 0 1 2 3 4 < 6 0 2 3 Week After Tumor Challenge Activated NK Resting NK 30 30 А в Control Relative Cell Number 다 않 1'n NK1.1 20-CD16 Control 4-1BB D16 10 VK1.1 102 101 103 104 100 101 102 103 10° 104

Fluorescence Intensity

4-1BB antibodies cure many types of cancer in mouse models

Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors

Table 1. Suppression of various tumors by targeting the 4-1BB-4-1BBL pathway

Agent	Cancer type suppressed
Anti-4-1BB mAb	Ag104A sarcoma
	MCA205, GL261 glioma
	C3 tumors, TC1 carcinoma
	J558 tumors
	A549 tumors
Variants of anti-4-1BB	K1735 melanoma
	M108 tumors
	K562 erythroleukemia
	FRa tumors
Anti-4-1BB combination therapy	B16 melanoma
	Renal cell carcinoma
	K1735 melanoma
	CT26 colon carcinoma
	MCA205 tumors
	MC38 tumors
	M109, EMT6 tumors
4-1BBL and its variants	Liver metastases
	Cholangiosarcoma
	Neuroblastoma
	AML, Wilms tumor 1
	Colon 2A and 26 tumors
	P815 plasmacytoma
	K562/AO2 tumors
	Mouse forestomach carcinoma

4-1BB agonist antibodies cause liver inflammation

Cancer Res. 2006 Jul 15;66(14):7276-84.

Combination therapy with anti-CTL antigen-4 and anti-4-1BB antibodies enhances cancer immunity and reduces autoimmunity.

Kocak E¹, Lute K, Chang X, May KF Jr, Exten KR, Zhang H, Abdessalam SF, Lehman AM, Jarjoura D, Zheng P, Liu Y.

4-1BB/CD137 agonist antibody clinical summary

- Used as a monotherapy to treat solid tumors in some trials with PR and SD reported
- Used to activate NK (and myeloid) cells to mediate improved ADCC in combination with tumor-specific antibodies like Rituximab and Cetuximab (EGFR)
- BMS antibody is IgG4, does not block binding of 4-1BBligand but causes liver toxicity even at 0.3mg/kg
- Pfizer antibody is IgG2, does block 4-1BB-ligand, but does not cause severe liver toxicity even at 10mg/kg
- Combination trials with PD-1 have begun and with CTLA-4 are being planned

Cancer Immunology Immunotherapy, 2015.

Immune checkpoint modulating antibodies currently in the clinic

Table 1: T cell immune checkpoint modulating antibodies in the clinic

Target Molecule	Drug	Company	Development Stage
CTLA-4	Ipilimumab	Bristol-Myers Squibb	FDA Approved
	Tremelimumab	Medimmune/Astrazeneca	Phase III Trial
PD-1	Pembrolizumab	Merck	FDA Approved
	Nivolumab	Bristol-Myers Squibb	FDA Approval Pending
	AMP-514/MEDI0680	Medimmune/Astrazeneca	Phase I Trial
PD-L1	MPDL3280A	Genentech/Roche	Phase III Trial
	MEDI4736	Medimmune/Astrazeneca	Phase III Trial
	MSB0010718C	EMD Serono	Phase II Trial
	BMS-936559	Bristol-Myers Squibb	Phase I Trial
4-1BB	Urelumab	Bristol-Myers Squibb	Phase I Trial
	PF-05082566	Pfizer	Phase I Trial
OX-40	MEDI6469	Medimmune/Astrazeneca	Phase I Trial
	MEDI6383 (rOX40L)	Medimmune/Astrazeneca	Phase I Trial
	MOXR0916	Genentech/Roche	Phase I Trial
GITR	TRX518	Tolerx	Phase I Trial
CD27	CDX-1127	Celldex	Phase I Trial
CD40	CP-870,893	Genentech/Roche	Phase I Trial
LAG3	BMS-986016	Bristol-Myers Squibb	Phase I Trial

Ai M., **Curran M.A.** Immune checkpoint combinations from mouse to man. *Cancer Immunology Immunotherapy*, 2015.

Conclusions

- Immune check point inhibitors have shown benefit in several tumors as single agents.
- Benefit occurs only in a proportion of patients but is sustained for a long time.
- Unique adverse events
- Biomarkers still not defined
 PD-L1 expression, Genomic analysis?
- Combinations being explored
 - Both with other check point inhibitors and cytotoxic agents