

Active Immunization Approaches

Richard Essner, MD, FACS Cedars-Sinai Cancer Center UCLA School of Medicine

Disclosures:

Advisory: Merck, Amgen, Castle Biosciences Stocks: Pfizer, Celgene

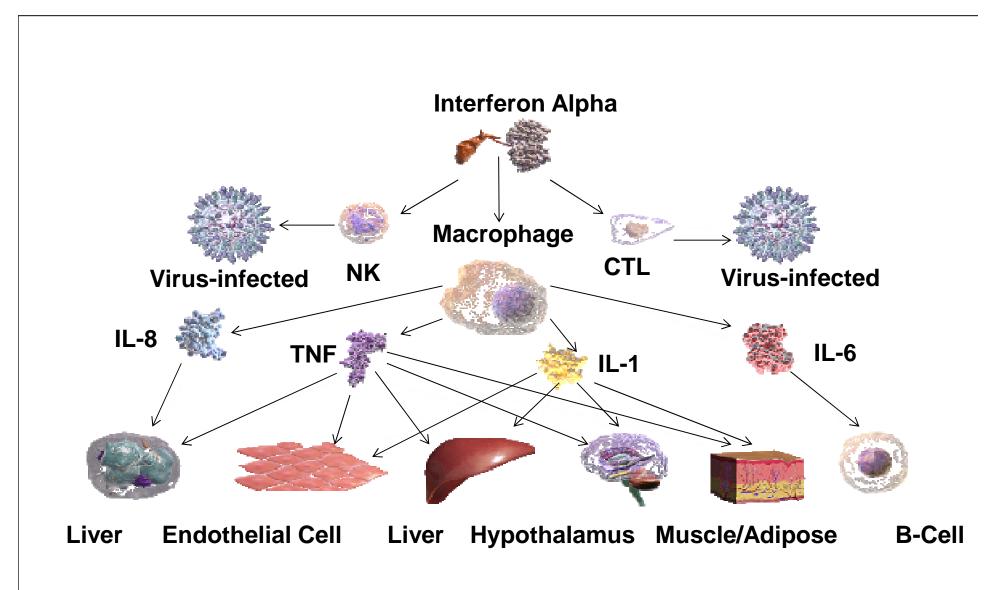
Contact information: richard.essner@cshs.org

Potential Benefits of Coley's Toxins

END RESULTS OF 484 CASES OF MALIGNANT DISEASE WITH HISTOLOGIC CONFIRMATION IN WHICH COLEY'S TOXINS WERE USED

			Inoperable		Operable	
Type of tumor	Total no. cases	Total	Five year survivals	Total	Five year survivals	
Carcinoma	69	45	15	24	21	
Malignant melanoma	24	19	4	5	3	
Bone sarcoma	205	98	37	107	51	
Soft parts sarcoma	123	91	53	32	25	
Lymphosarcoma	49	45	24	4	4	
Hodgkin's Disease	14	14	1	0	0	
Total	484	312	134	172	105	

Precipitating Antibody in Human Seroma of an Antigen in Burkitt's Lymphoma


Old LJ. PNAS 1966; 56:1699

Potential Methods of Immunotherapy

142	G. A. CURRIE						
			TABLE I.—Potential Metho	ods d	of Immunotherapy		
			Specific		Non-specific		
	Passive	,	Xenogeneic or allogeneic anti-tumour antisera		Non-specific serum factors Properdin, etc.		
	Adoptive	•	Xenogeneic or allogeneic sensitized lymphoid cells or extracts		Normal lymphoid cells— allogeneic or xenogeneic. Anti- tumour effect of GVH disease		
	Active	•	Tumour cells, extracts or chemically-modified tumour antigens. Foetal antigens	٠	Non-specific stimulants of the immune response BCG, <i>C. parvum</i> , etc.		

The Immune Response

INNATE Signaling IMMUNE molecules RESPONSE

Pathogens

B cells make antibodies that target specific pathogens

BCELL

T cells kill pathogens and attack infected cells

T CELL

INNATE IMMUNE CELLS

Innate immune cells engulf and kill pathogens and release molecules to enhance the immune response Some T and B cells become memory cells that quickly fight future infections by the same pathogen

IMMEDIATE RESPONSE

DELAYED RESPONSE

Time

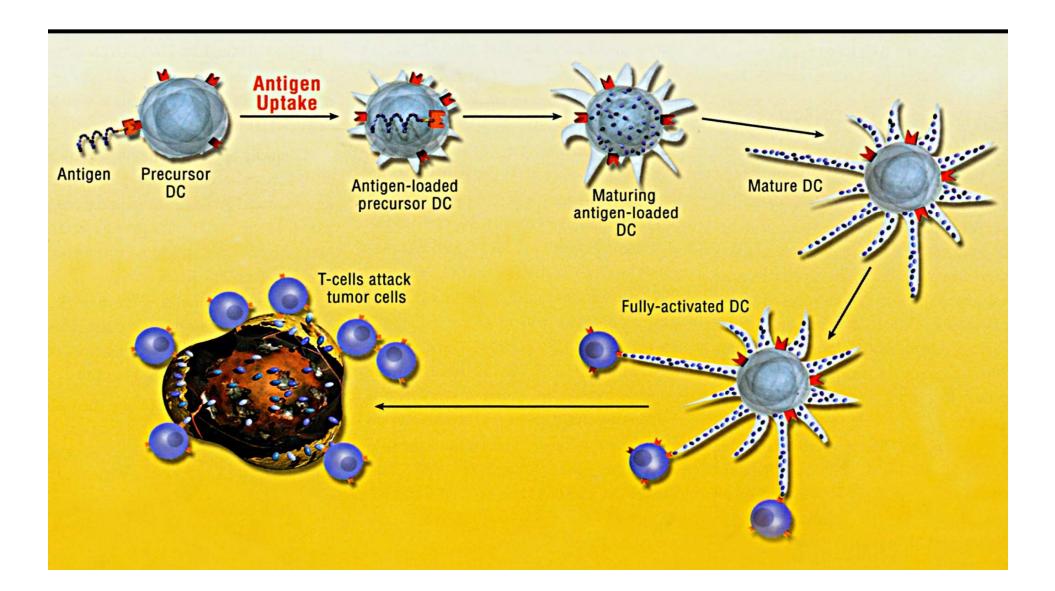
2. Antigen Presentation

1. Antigen Release

> T-cell priming, Activation, – and Memory Generation

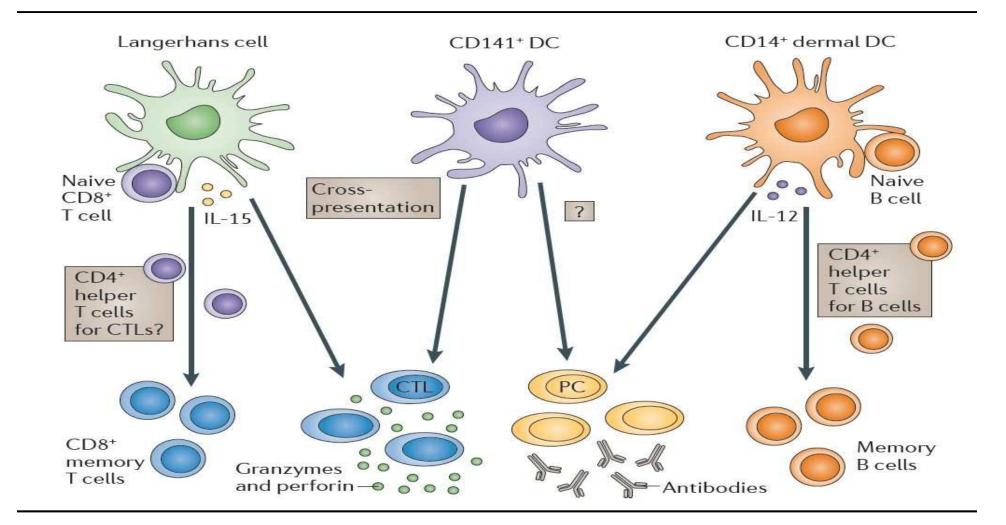
7. Cell Death

4. Migration -


6. Recognition

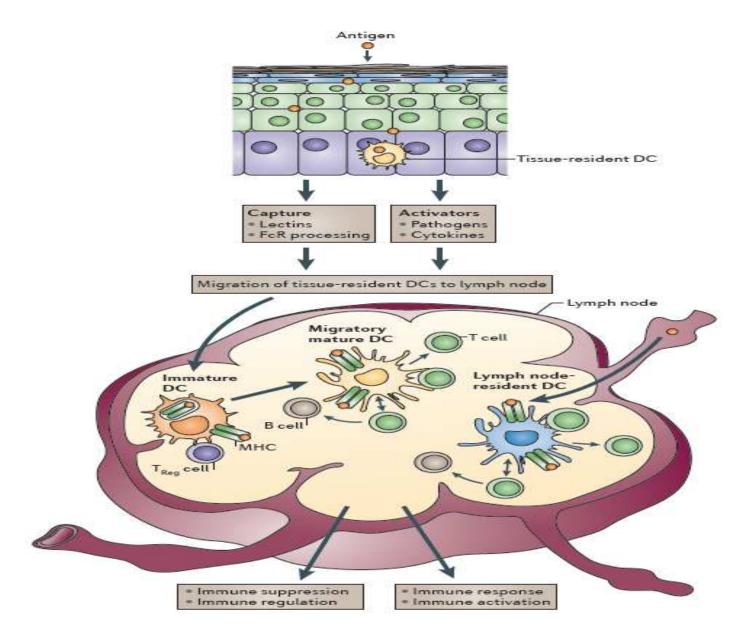
5. Infiltration

www.melanomaantigens.com © 2015 Amgen Inc. All rights reserved

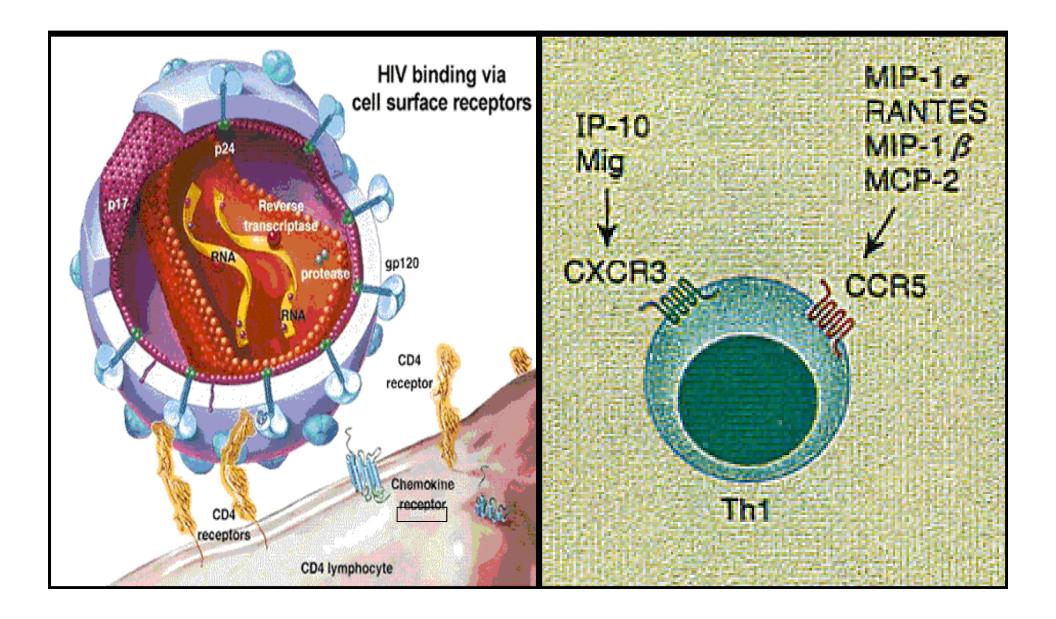


Activation of the Immune Response by Dendritic Cells

Subset of Dendritic Cells (DCs)


Nature Reviews Cancer 12, 265-277 (April 2012) | doi:10.1038/nrc3258

Stimulating an Immune System Response Against Tumor Antigen

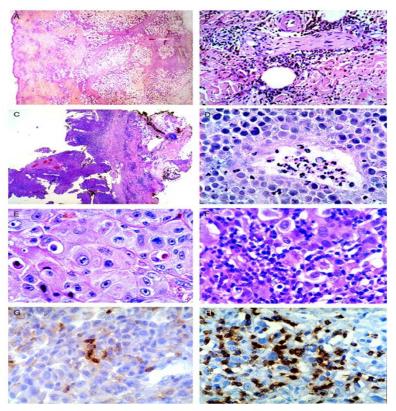


Functional Aspects of Chemokine Receptor 5 (CCR5)

Immune Cell Types in Melanoma

Table 1 Prevalence of immune cell types in sentinel vs. non-sentinel nodes and in positive vs. negative SLNs

Study (reference)	Tumor	Number of	Number of	Deni	dritic II s		ture Cs		cytoid Cs	T cells		Regulato	ory T cells
	type	patients (SLNs)	+/- SLNs	SLN vs. NSLN	+ vs SLN	SLN vs. NSLN	+ vs SLN	SUN vs. NSUN	+ vs SLN	SLN vs. NSLN	+ vs SLN	SLN vs. NSLN	+ vs SLN
Compared to NSLNs of the same patient cohort		04.04.44	-								~		
Cochran et al. 2001 [3]	melanoma	11 (21)	10 / 11	lower	NT	NT	NT	NT	NT	NT	NT	NT	NT
Botella-Estrada et al. 2005 [4]	melanoma	10 (17)	1 / 16	higher	NT	no diff.	NT	NT	NT	NT	NT	NT	NT
Gerlini et al. 2007 [20]	melanoma	27 (39)	8/31	NT	NT	NT	NT	NT	higher	NT	NT	NT	NT
Speeckaert et al. 2011 [14]	melanoma	116 (116)	26 / 90	NT	NT	NT	NI	NĪ	NT	NT	NT	NT	higher
Ma et al. 2012 [15]	melanoma	84 (84)	31 / 53	NT	lower	NT	higher	NT	NT	NT	NT	NT	higher
Huang et al. 2000 [2] ²	breast cc.	21 (21)	not spec.	lower	NT	lower	NT	NT	NT	lower	NT	NT	NT
Kohrt et al. 2005 [7] ²	breast cc.	29 (29)	29/0	lower	NT	NT	NT	NT	NT	lower (CD4⁺)	NT	NT	NT
Bembenek et al. 2008 [6]	breast cc.	79 (114)	$51/28^3$	NT	NT	higher	NT	NT	NT	NT	NT	NT	NT
ishigami et al. 2003 [11]	gastric cc.	27 (27)	8/19	no diff.	nodiff	NT	NT	NT	NT	no diff.	no dif.	NT	NT
Lee et al. 2011 [13]	gastric cc.	64 (64)	45 / 193	NT	NT	NT	no diff.	NT	NT	NT	no diff.	NT	higher
Sakakura et al. 2006 [5]	oral cc.	12 (41)	0/41	higher	NT	no diff.	NT	NT	NT	NT	NT	NT	NT
Compared to non-tumor control nodes													
Mansfield et al. 2011 [10]	melanoma	20 (20)	8/12	NE	NT	lower	no diff.	no diff.	no dif.	iower (CD8+)	no dif.	no diff.	no diff.
Poindexter et al. 2004 [12]	breast c.c.	50 (50)	25 / 25	no diff.	no diff.	no diff.	lower	NT	NT	NT	NT	NT	NT
Mansfield et al. 2009, 2011 [8,9]	breast c.c.	47 (47)	36 / 11	no diff.	no diff.	higher	lower	no diff.	no dif.	higher (CD8+)	no diff.	no diff.	higher


Columns SLN vs. NSLN: comparison of negative SLNs to negative NSLNs or controls (except in studies [2] and [7]); columns + vs. - SLN: comparison of positive to negative SLNs. ¹SLNs and NSLNs of unspecified status were compared; ²positive SLNs were compared to mixed (+ and -) NSLNs; also compared to non-tumor controls, with similar results.

Inumber of patients with + / - SLN status; NT: not tested; no diff; no difference; not spec; not specified.

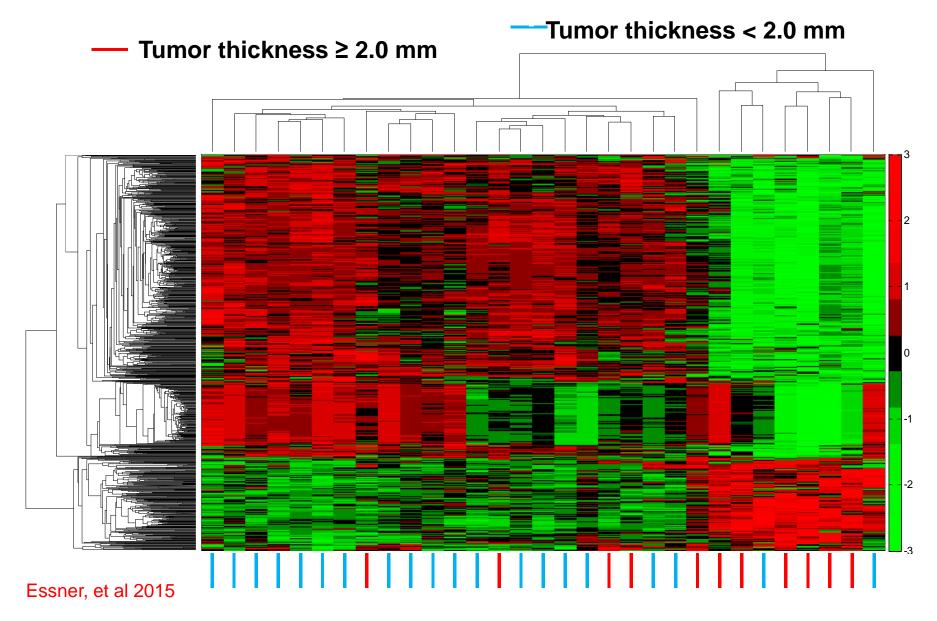
Injection Site of Irradiated GM-CSF Secreting Melanoma Cells

(A) Injection site of irradiated GM-CSF secreting melanoma cells.

Robert Soiffer et al. PNAS 1998;95:13141-13146

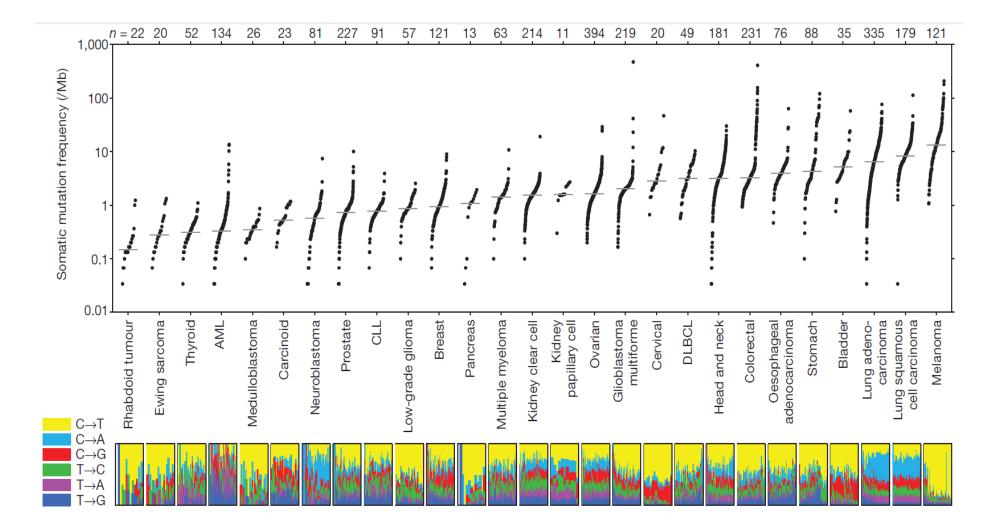
Antigens and Adjuvants

- Antigens are recognized by T cells and therefore act as targets for immunotherapy
- Adjuvants have proven useful as they direct cellular immune responses to these antigens
- Multiple adjuvants and/or antigens are generally used together in active immunotherapies in order to strengthen the immune response to the cancer



Antigen Approaches

- Whole Cell
- Irradiated Cell Lysates
- Peptide
- Protein



Dendrogram of 981 differentially expressed genes

Somatic mutation frequencies from 3,083 tumor and normal tissue pairs

Lawrence et al. Nature 2013; 499

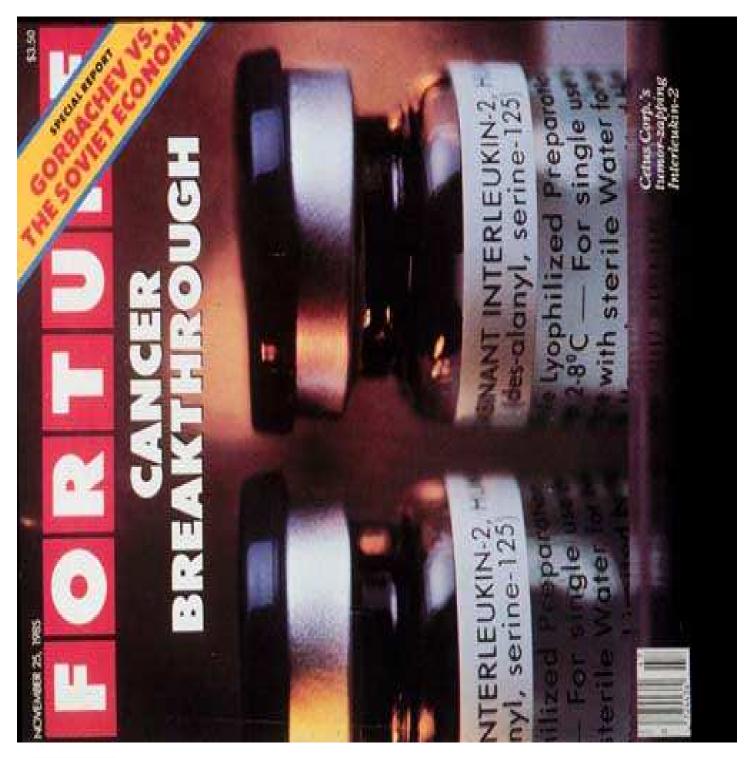
Antigens Presented by Cancer Cells

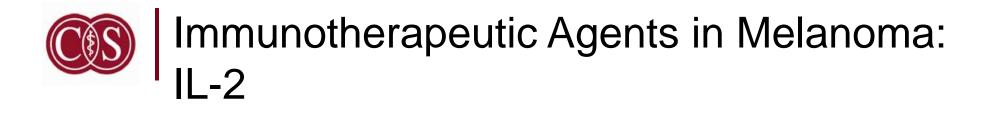
Antigen	Specific Types
Shared Antigens	
Cancer-testis antigens:	BAGE, GAGE, MAGE, NY-ESO-1
Differentiation antigens:	CEA, gp100, Melan-A, PSA,
	tyrosinase
Overexpressed antigens:	HER2, hTERT, p53, survivin
Unique Antigens	
Oncogene-associated antigens:	β-catenin-m, HSP70-2/m, KRAS
Shared antigens with unique mutation	ons
Glycans:	GM2, MUC1

Melero, I. et al. Nat. Rev. Clin. Oncol. 11, 509–524 (2014)

Tumor Expression Profile of Cancer-Germline Genes

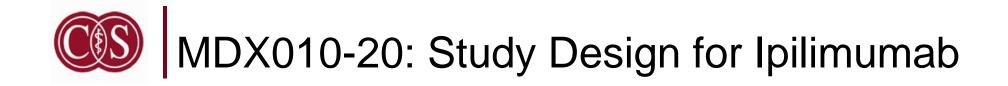
Genes	Metastatic melanoma	Lung carcinoma	Colorectal carcinoma	Breast carcinoma	Prostate carcinoma	Refs
MAGEA1	46	46	0	19	18	69
MAGEA3	74	47	17	13	18	69
MAGEA4	25	51	11	6	0	69
MAGEA12	62	30	11	13	5	69
MAGEC2	43	11	0	15	1 of 10 [‡]	46
BAGE1	31	10	0	12	0	69
GAGE1	41	38	0	10	15	69
XAGE1B	43	2 of 3‡	4 of 12 [‡]			180
CTAG2	33	41	0	23	27	69
CTAG1	35	27	0	23	27	69
SSX2	50	0	26	19	25	181,182

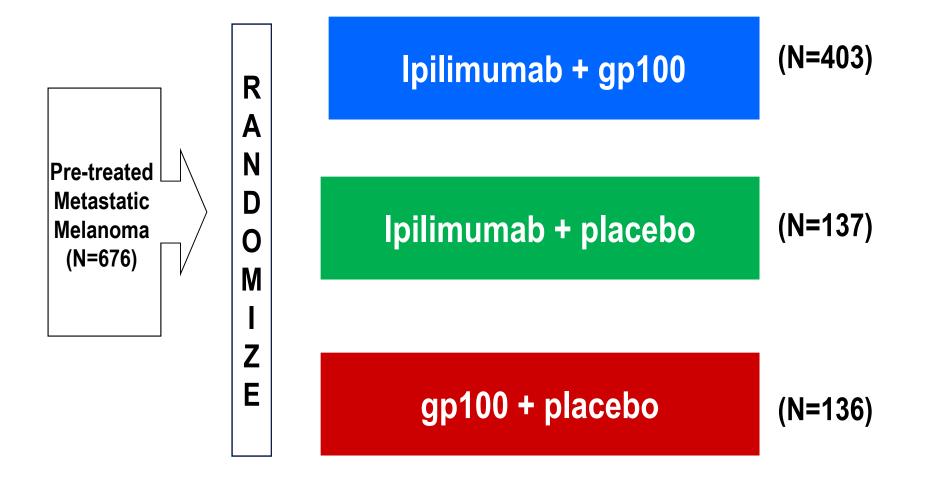

BAGE1, B melanoma antigen 1; CTAG, cancer/testis antigen (CTAG2 is also known as LAGE1; CTAG1 is also known as NYESO1); GAGE1, G antigen 1; MAGEA, melanoma antigen family A; SSX2, synovial sarcoma X breakpoint 2; XAGE1B, X antigen family member 1B. *Percentage of tumours that express the gene. [‡]The numbers of tested tumours are low, and the real numbers are shown.


Adjuvants for Cancer Vaccines

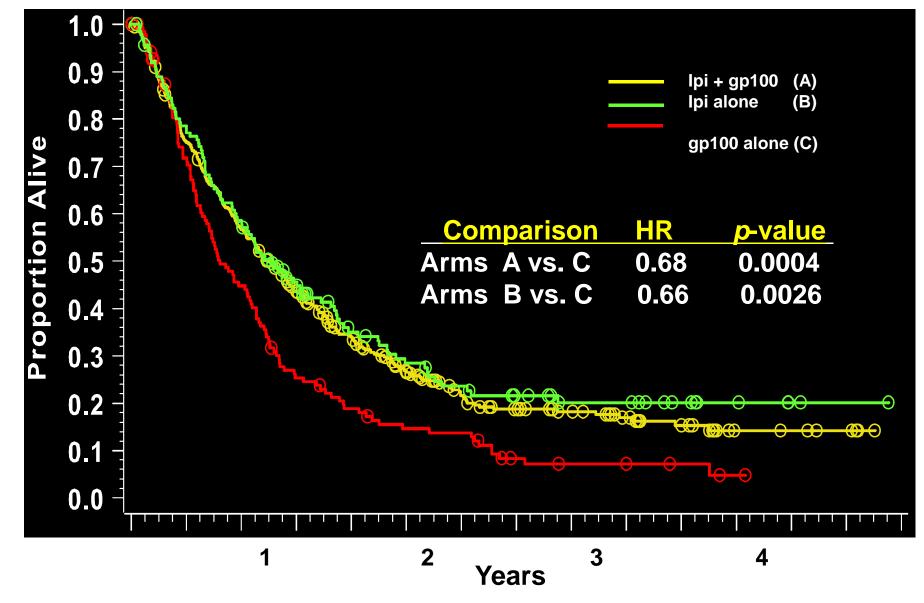
Adjuvant	Specific Types
Cytokines:	GM-CSF, IL-12
Microbes:	BCG, CpG, Detox, Lipid A
Mineral Salts:	Alum
Oil Emulsions or surfactants:	ASO ₂ , MF59, Montanide™, QS21
Particulates:	ASO ₄
Viral Vectors:	Adenovirus, vaccinia, fowlpox,
	herpes

Melero, I. et al. Nat. Rev. Clin. Oncol. 11, 509–524 (2014)



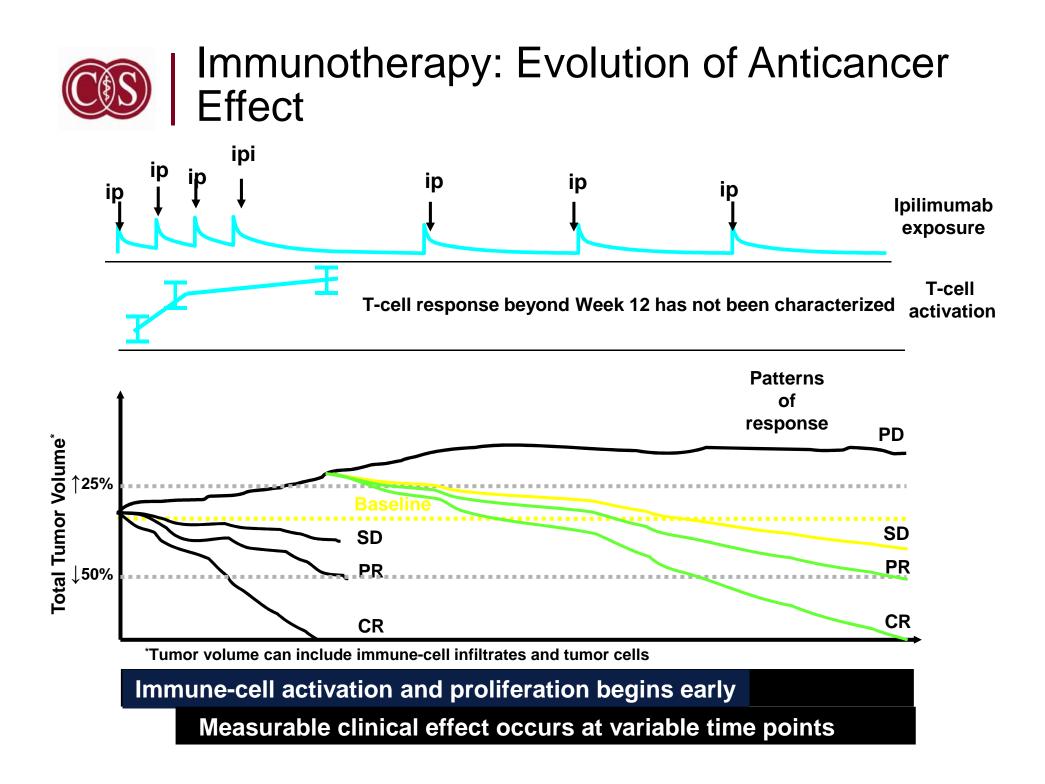

- Approved by the US FDA metastatic melanoma 600,000 IU/kg every 8 hours up to 14 doses x 2 cycles;
- Registration trial: single-agent IL-2 therapy

- 270 pts; 8 trials; 22 institutions


Response	RR (%)	DOR (mos)	Range of Response (mos)
ORR	16	9	1.5-106.2
CR	6	>40	2.5-106.2
PR	10	6	1.5-91.5

Atkins. J Clin Oncol. 1999;17:2105; Agarwala. Expert Rev Anticancer Ther. 2009;9:587.

Ipilimumab Improves Best Objective Response Rate


	lpi + gp100	lpi + pbo	gp100 + pbo
BORR, %	5.7	10.9	1.5
P-value: B/C		0.0012	
DCR [‡] , %	20.1	28.5	11.0
P-value: B/C		0.0002	

Clinical Activity of BMS-936558 in Melanoma Patients

Рор	Dose (mg/kg)	Pts n	ORR n (%)	Duration of Response (mo)	SD ≥24 wk n (%)	PFSR at 24 wk (%)
	0.1	14	4 (29)	5.6 to 7.5+	1 (7)	40
	0.3	16	3 (19)	1.9+ to 3.8+	1 (6)	31
MEL	1	27	8 (30)	5.3+ to 24.9+	3 (11)	45
	3	17	7 (41)	9.2+ to 22.4+	1 (6)	55
	10	20	4 (20)	17.0 to 24.6+	0	30

- ORR was assessed using modified RECIST v1.0.
- 3 melanoma patients had a persistent reduction in baseline target lesions in the presence of new lesions but were not classified as responders for the ORR calculation

Kinetics of Response

- <u>HD IL-2</u>
 - Rapid
 - CR or Bust
 - > Acute Toxicity then Resolution

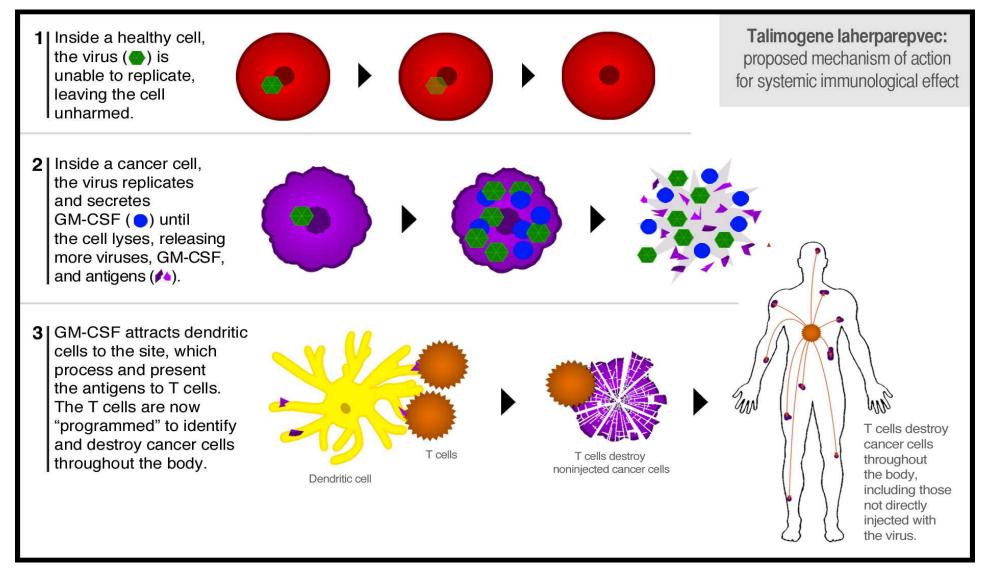
• <u>Ipilimumab</u>

- > Variable, Peak 3-6 months
- > CR rare, PR/SD/MR/MP Durable
- > Progression followed by Response
- > Toxicity Sub-acute then Resolution

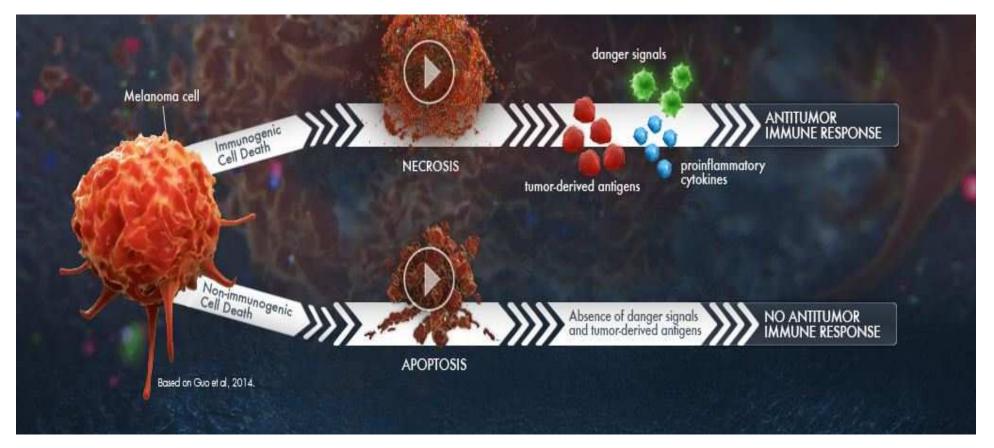
Immune Checkpoint Inhibitors

Inhibitor	Dose	Ν	6mPFS	RR	CR
Ipilimumab	3mg/kg	278	26	11.9	1.4
Pembrolizumab	10mg/kg	279	47	33.7	6.1
	(for 2 weeks)				
	10mg/kg	227	46	32.9	5
	(for 3 weeks)				-

Robert. New England Journal of Medicine. 2015



Dermal Metastases—A Function of Diminished Primary Margins?—How do we treat?


Oncolytic Virus Immunotherapy— Talimogene laherparepvec (T-Vec, Amgen)

Antigen Release: The Catalyst in Guiding the Immune System to Melanoma

• Tumor cell necrosis (a form of immunologic cell death) releases tumor-derived antigens (TDA)—the catalyst in guiding the immune system to melanoma

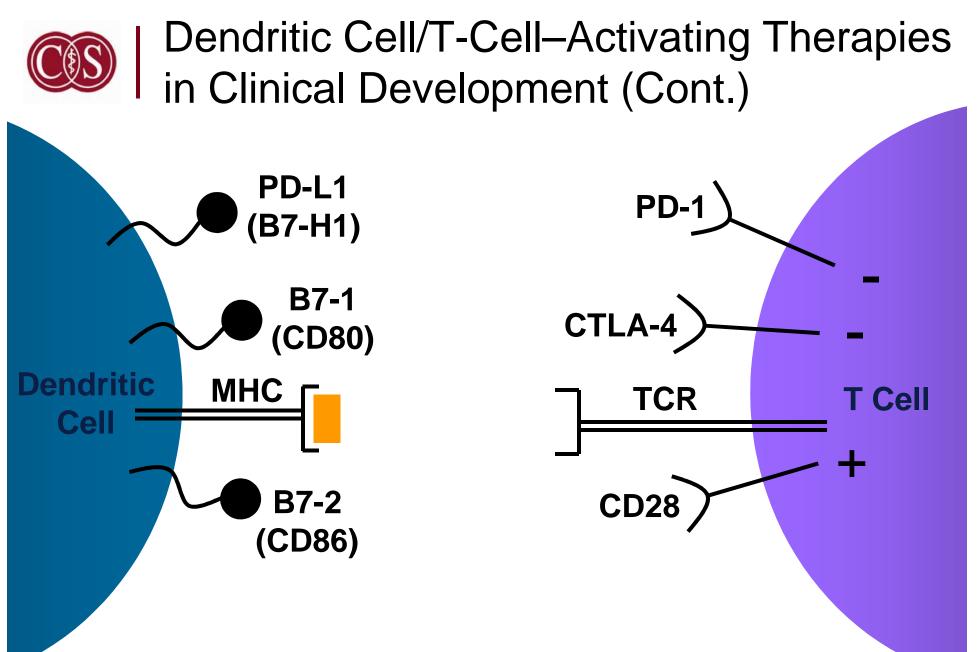
www.melanomaantigens.com © 2015 Amgen Inc. All rights reserved

T-Vec Improves Durable Response Rate in Patients w/ Advanced Melanoma

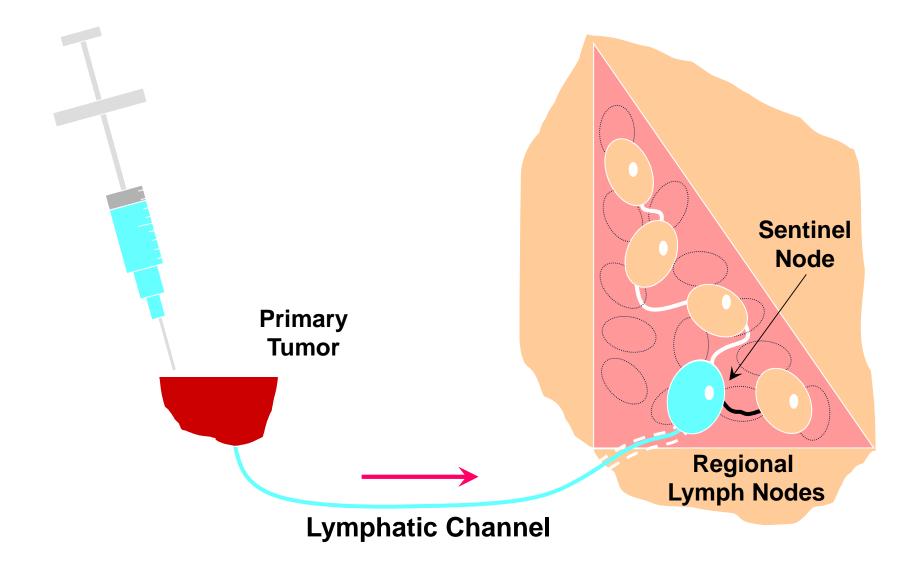
- T-Vec is a herpes simplex virus type 1—derived oncolytic immunotherapy
- Its functions are carried out through replicating w/in tumor cells and producing GM-CSF to augment whole-body immune responses
- T-Vec is the first oncolytic immonotherapy to show a therapeutic advantage in combating melanoma in a phase III clinical trial.

	DRR	ORR	Median OS
T-VEC	16.3%	26.4%	23.3 months
GM-CSF	2.1%	5.7%	18.9 months

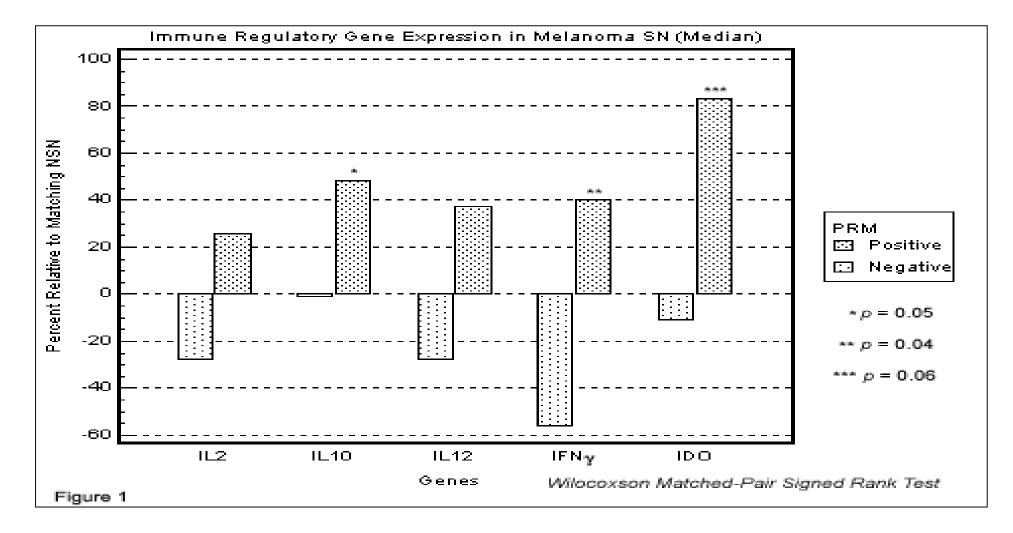
Sipuleucel-T (Provenge, Dendreon Corp) Immunotherapy and Proposed Mode of Action

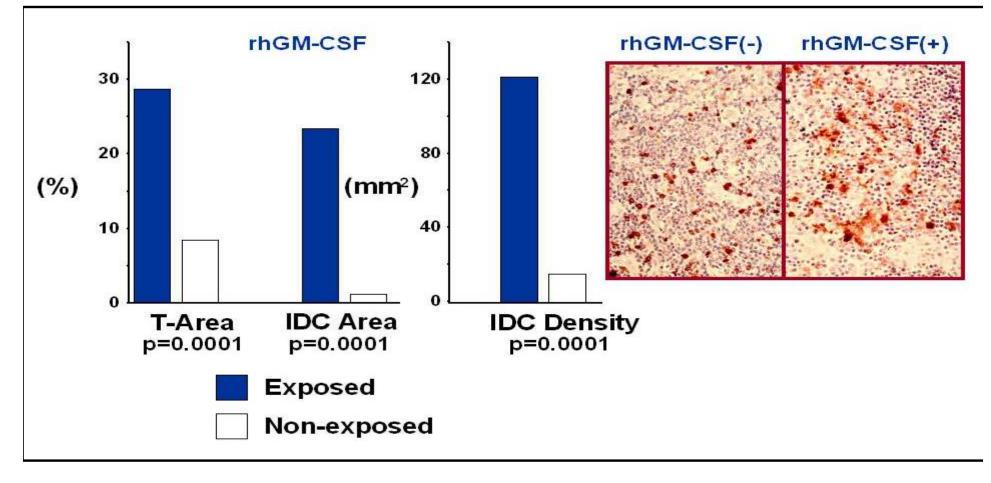

Cancer Immunol Immunother. 2015; 64(6): 655–663. Published online 2015 May 30. doi: <u>10.1007/s00262-</u> <u>015-1707-3</u>

- As melanoma metastasizes, it develops genetic mutations, which result in continual presentation of evolving tumorderived antigens (TDA)→Loss of recognition ability by the host's immune system→T-Cell activation ceases to occur
- We have revealed a molecular profile of melanoma that supports the presence of a tumor microenvironment that is immunosuppressive
 - →inducing the loss of function of antigen presenting cells (APCs/Dendritic cells)
 - →inducing a loss of T-Cell function (activation, differentiation, and migration into tumor cells)
- These mechanisms among others prevent melanoma cells from undergoing immunologic cell death



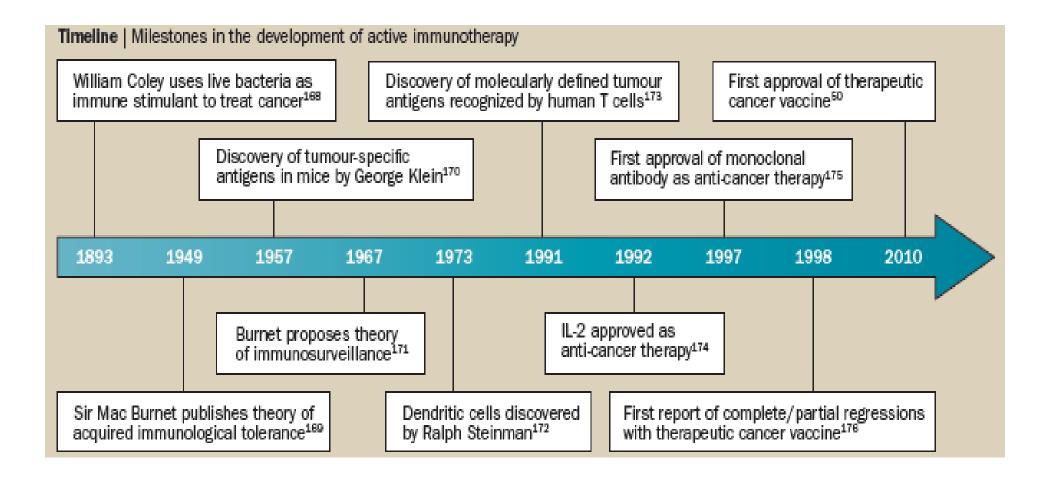
- Skin
- Gastrointestinal Tract
- Pituitary
- Liver
- Lung


Benjamin. *Immunology: A Short Course*. 3rd ed. New York, NY: Wiley-Liss, Inc. 1996; Paul, ed. *Fundamental Immunology*. 3rd ed. New York, NY: Raven Press, Ltd. 1993; Ribas. *J Natl Compr Canc Netw*. 2006;4:687.



Cytokine Profiling of Sentinel Lymph Nodes by qRT-PCR

Lee JH. Clin Ca Res 2005;11: 107


Alterations in Sentinel Node Morphology With intradermal Administered GM-CSF

Lee JH. Clin Ca Res 2005;11: 107

Historical Context of Immunotherapy

- High Tumor Burden BRAF Mutated (Rapid Growth, Symptomatic)
 - Vemurafinib
 - What do you do at maximal response?
 - How do you incorporate Ipilimubab?
 - How does CNS disease factor in?
- Low Tumor Burden BRAF WT
 - Ipilimumad, then anti-PD1
 - Surgery
 - IL-2
 - Adoptive T-Cell Therapy
 - How does CNS disease factor in?

Lessons and Take Home Messages

- Cancer immunotherapy attempts to harness the strength and specificity of the immune system to combat tumor cells
- With a further understanding of the molecular and cellular bases of T-cell-mediated anti-tumor responses, we can employ the methods of **Active** immunotherapy to treat progressive cancer
- Focusing on antigens with limited expression (i.e. tumor associated antigens, TAA) should potentiate the evolution of increasingly potent therapies with enhanced response rates
- Prospective studies should aim to refine active immunotherapy, by studying and altering the tumor's microenvironment in order to perfect tumor-specific immune responses