

Melanoma: The poster child for immunotherapy Jason J. Luke, M.D., F.A.C.P. SITC Immunotherapy CME - August 30th, 2015

Disclosures

- <u>Consultancy</u>:
 - Amgen
- I will discuss the investigational use of ipilimumab, nivolumab, pembrolizumab, TVEC, dabrafenib, trametinib, and vemurafenib as well as some investigational compounds

Learning objectives

- To describe the available forms of immunotherapy for melanoma
- To describe mechanism of action and management of adverse events with immunecheckpoint immunotherapy
- To discuss the future of immunotherapy for melanoma and all cancer

What are immunotherapy treatments? The "Cancer Immunity Cycle"

THE UNIVERSITY OF CHICAGO MEDICINE & BIOLOGICAL SCIENCES

Cytokines and Oncolytic Viruses

Chen et al. Immunity. 2013

Adjuvant Interferon-α

SE Patients

	HR
NCCTG (Creagan, 1995)	0.90
E1684 (Kirkwood, 1996)	0.73
FCGM (Grob, 1998)	0.70
E1690 (Kirkwood, 2000)	0.98
SMG (Cameron, 2001)	0.86
E1694 (Kirkwood, 2001)	0.72
WHO (Cascinelli, 2001)	0.95
UKCCCR (Hancock, 2004)	0.94
EORTC18871 (Kleeberg, 2004)	0.98
EORTC18952 (Eggermont, 2005)	0.91
DeCOG (Garbe, 2008)	0.62
EORTC18991 (Eggermont, 2008)	1.00
	0.90

						(IFN
	0.90	0.64	1.25	0.17	264	6
	0.73	0.54	0.99	0.15	287	8
	0.70	0.49	0.98	0.17	499	5
	0.98	0.76	1.24	0.12	642	19
	0.86	0.54	1.35	0.23	96	3
	0.72	0.52	0.99	0.16	880	5
	0.95	0.76	1.20	0.12	444	14
	0.94	0.74	1.17	0.12	674	15
)	0.98	0.77	1.23	0.12	484	13
05)	0.91	0.76	1.07	0.09	1388	53
	0.62	0.44	0.86	0.17	296	6
08)	1.00	0.84	1.18	0.09	1256	25
	0.89	0.83	0.96	0.04		

UL

LL

Time Magazine, March 31st, 1980 Trinchieri, J Exp Med. 2010 Mocellin et al. JNCI. 2010 http://www.sinobiological.com/Inter feron-Side-Effects-a-6085.html

High Dose Interleukin-2 Therapy (HD IL-2): Durable Responses

- HD IL-2 produces durable responses in 6%-10% of patients with advanced melanoma
- Few relapses in patients responding for over 2.5 years (cured?)
- FDA approval for melanoma in 1997

HD IL-2 Therapy in Melanoma

- High-dose IL-2 benefits some patients **BUT**
 - Toxic
 - Expensive
 - Inpatient procedure
- Use limited to well-selected patients at experienced centers
- Efforts to better select patients who might benefit from HD IL-2 therapy have not been particularly successful (NRAS?)

T-VEC: An HSV-1-Derived Oncolytic Immunotherapy Designed to Produce Local and Systemic Effects

Tumor-Specific Immune Response

Systemic tumor-specific immune response

> CHICAGO MEDICINE & **BIOLOGICAL SCIENCES**

Death of distant cancer cells

Kaufman et al. ASCO (2014), abstr LBA9008

Phase III trial of T-VEC vs GM-CSF PFS Per Investigator

Ipilimumab and Immune Check-Point Blockade

Nature Reviews | Cancer Pardoll, Nat Rev Can 2012

Pooled Overall Survival Analysis of 4846 Patients treated with ipilimumab

Ipilimumab Immune-Related Adverse Events From Phase III Trial

	All grades (Gr 3/4)			
irAE, %	lpi + gp100 N=380	lpi +pbo N=131	gp100 + pbo N=132	
Any	57 (9.7/0.5)	60 (12.2/2.3)	32 (3.0/0)	
Dermatologic	39 (2.1/0.3)	42 (1.5/0)	17 (0/0)	
GI	31 (5.3/0.5)	28 (7.6/0)	14 (0.8/0)	
Endocrine	3 (1.1/0)	8 (2.3/1.5)	2 (0/0)	
Hepatic	2 (1.1/0)	3 (0/0)	4 (2.3/0)	

Kinetics of Appearance of irAEs with Ipilumumab

Weber et al. J Clin Oncol. 2012

Immune Related Response Criteria

Wolchok et al, Clin Can Res 2010

PD-L1 dampens the anti-tumor immune response

PD-L1 expression in the tumor microenvironment can inhibit anti-tumor T cell activity:

- 1. PD-L1 expression by tumor infiltrating *immune cells*
- 2. PD-L1 expression by cancer cells

Anti-PD1 (pembrolizumab) *after* ipilimumab in Melanoma

Front-line anti-PD1 (nivolumab) vs. DTIC in Melanoma^(BRAF WT)

Front-line anti-PD1 (pembrolizumab) vs. ipilimumab in Melanoma

Pembrolizumab-Related Adverse Events

Adverse Event	All Grades, n (%)	Grade 3-4, n (%)
Any	107 (79.3)	17 (12.6)
Fatigue	41 (30.4)	2 (1.5)
Rash	28 (20.7)	3 (2.2)
Pruritus	28 (20.7)	1 (0.7)
Diarrhea	27 (20.0)	1 (0.7)
Myalgia	16 (11.9)	0
Headache	14 (10.4)	0
Increased AST	13 (9.6)	2 (1.5)
Asthenia	13 (9.6)	0
Nausea	13 (9.6)	0
Vitiligo	12 (8.9)	0
Hypothyroidism	11 (8.1)	1 (0.7)
Increased ALT	11 (8.1)	0
Cough	11 (8.1)	0
Pyrexia	10 (7.4)	0
Chills	9 (6.7)	0
Abdominal pain	7 (5.2)	1 (0.7)

THE UNIVERSITY OF CHICAGO MEDICINE & BIOLOGICAL SCIENCES Observed in >5% of Patients (N = 135)

Nivolumab Immune-Related Response

- Of 120 nivolumab-treated subjects in the treated population
 - 37 continued treatment beyond RECIST 1.1-defined progression
 - 10 (8%) subsequently experienced a ≥30% reduction in target lesion tumor burden ("immune-related, unconventional response pattern")

Response to Pembrolizumab Based on Tumor PD-L1 Expression: RECIST v1.1

PD-L1 and Radiologically Evaluable Patients (n = 113),^a Independent Central Review

PD-L1 positivity defined as staining in \geq 1% of tumor cells.

Analysis cutoff date: 18 October 2013.

^aEvaluable patients were those patients in the training set with evaluable tumor PD-L1 expression who had measurable disease at baseline per central review. ^b1-sided *P* values calculated by logistic regression, adjusting for dose/schedule. Daud et al. AACR Annual Meeting. Abstract CT104. 2014

Interferon-x gene signature

Combining Anti-CTLA4 and Anti-PD1 Antibodies

CHECKMATE 067 – Ipi+Nivo vs. Ipi or Nivo vs. Ipi in Melanoma

*Per validated PD-L1 immunohistochemical assay based on PD-L1 staining of tumor cells in a section of at least 100 evaluable tumor cells

developed a response

Wolchok et al. J Clin Oncol 33, 2015 (suppl; abstr LBA1)

Overall Survival for Concurrent Therapy by Dose Cohort

Snzol et al. ASCO 2014 Abstract 9003

Future: Adoptive Cell Therapy (ACT) with Antigen Specific T-cells

Single Cell Suspension Incubated with IL-2

Effect of Prior Treatment Regimens on Survival of Patients Treated with Autologous TILs and IL-2 NIH Experience

Durable Remission Rates Regardless of Use of Other Therapies

Rosenberg et al. Clin Cancer Res 2011

What is the future: **COMBINATIONS!**

Other interesting immune approaches

- Metabolic
 - IDO inhibitor
- Cytokines
 - IL-2, IL-12 etc
- Oncolytic Viruses
 - TVEC
- Targeted therapy
 - BRAF, VEGF etc.
- Chemotherapy
 - Gemcitabine, Cisplatin
- Radiation

IDO inhibitor epacadostat plus ipilimumab

Preliminary Results From a Phase 1/2 Study of INCB024360 Combined with Ipilimumab in Patients With Melanoma

Gibney et al. ASCO (2014). Abstract TPS9117

T-Vec + Ipi in Unresected Stage IIIB-IV Melanoma: Max Change in Tumor Burden

*Only patients who received both T-Vec and ipilimumab. CR, CRu, and PD included.

[†] One patient with PD not shown in the plot because tumor burden could not be accurately calculated (missing post-baseline data)

[‡] Percentage change from baseline: 538

§ Percentage change from baseline: 265

What about Targeted Therapy – Immunotherapy Combos?

- BRAF inhibitor associated with increase CD8+ T-cell infiltrate
- Resistance to BRAF inhibitors leads to up regulation of PD-L1

Pre

BRAFI Frederick et al, Clin Can Res 2013

What about Targeted Therapy – Immunotherapy Combos?

• Phase I ipilimumab + vemurafenib

Stopped for hepatic toxicity

• Phase I ipilimumab + dabrafenib + trametinib

Stopped for colitis/perforation toxicity

- On-going studies of BRAF and MEK inhibitors with anti-PD1/L1 antibodies
 - First report suggests no gain in response rate and substantial toxicity with combo

Synergy between immunotherapy and radiation?

Postow, et al. New Engl J Med 2012

Conclusions

- Immunotherapy is standard of care in melanoma
 - Likely first and second line in most patients
- Understanding mechanisms of action important
 - Manage side effects, understand long-term benefit
- Immunotherapy combinations are likely the future
 - For melanoma and likely all cancers!

Thanks!

• Q's?

– Jason Luke, MD FACP –

jluke@medicine.bsd.uchicago.edu

Cancer Immunotherapy

