

Immunotherapy for Genitourinary Cancers

Walter Stadler, MD, FACP Fred C. Buffett Professor of Medicine & Surgery University of Chicago Disclosures

(All Non-University &/or Financial Dealings with Potential, Real, or Perceived Conflicts of Interest)

- Consultant:
 - Bayer, Caremark/CVS, Johnson & Johnson, MedPacto, Merck, NCI/SAIC-Frederick, Sotio
- Speakers Bureau:
 - CME providers (sponsorship unknown): Imedex, CME Network, Dava Oncology, PVI – Peer Review Institute
- Grant/Research Support (to institution):
 - Active Biotech, Bayer, Bristol-Myers-Squibb, Boerhinger-Ingelheim, Dendreon Exilixis, Novartis, Genentech (Roche), Glaxo-Smith-Kline, Merck, Medivation, Millenium (Astellas), Pfizer, NIH, Alliance
- Stockholder:
 - None
- Expert Witness
 - None
- Miscellaneous/Editorial:
 - Cancer (ACS), BCAN, Demos Medical Publishing, KCA, Up-To-Date, Wolters-Kluwer

Immunotherapy in Prostate Cancer

- Increase antigen delivery (e.g. Vaccines)
 - Expose and prime native immune system against specific proteins that are unique to cancer

• PSA-TRICOM (ProstVac)

- Take out APC's from body and prime ex vivo

Sipuleucel-T

• Repress the native regulation of immunity

Ipilimumab

 Antibody-dependent cytotoxicity with PC specific antibody – J591

Vaccination With Fresh (Functional) APCs: Generate ex vivo and Reinfuse

Drake, Nat Rev Immunol. 2010.

Sipuleucel T: IMPACT Overall Survival

THE UNIVERSITY OF CHICAGO MEDICINE & BIOLOGICAL SCIENCES

Courtesy of P. Kantoff, presented GU ASCO 2010

ProstVac: Mechanism

THE UNIVERSITY OF CHICAGO MEDICINE & BIOLOGICAL SCIENCES

Courtesy of C. Drake

ProstVac:Randomized Controlled Double Blind Phase II Study

Primary endpoint: Progression Free Survival Secondary endpoint: Overall Survival

ProstVac Outcome

Phase III Trial Comparing Ipilimumab vs. Placebo Following Radiotherapy in CRPCa

Day -28 to Day -2	Day -2 to Week 24		Wk 24 to Wk 48+
-------------------	-------------------	--	-----------------

Ipilimumab: Overall Survival

THE UNIVERSITY OF Chicago medicine & Biological sciences

Eugene D Kwon et al, *The Lancet Oncology*, Volume 15, Issue 7, Immuno 2014, 700 - 712

Immunotherapy: GU | 10

Ipilimumab: Post-hoc Analysis

Good Prognosis

Poor Prognosis

Immunotherapy: GU | 11

PSMA-directed antibody fused to ¹⁷⁷Lu (J591)

Immunotherapy: GU | 12

Prostate Cancer Immunotherapy Conclusions

- Appears to be less responsive to current available immunotherapy
- Checkpoint inhibitors have minimal to no impact
- Nevertheless there are hints of immunotherapy responsiveness that should be pursued
- Mechanisms of immunosuppression?

Renal Cancer: IL2

- Cytokine Working Group trial HD IL2 vs sc IL2/IFNA
 - HD IL2: 600,000 IU/kg q8° x 14 doses
 - sc IL2/IFNA: $5 \times 10^{6} \text{ IU/m}^{2} \text{ 4d/wk IL2}$; $5 \times 10^{6} \text{ IU/m}^{2} \text{ 2d/wk}$

	sc IL2/IFNA	HD IL2
Pt number	91	95
Deaths	1	1
CR	3	8 (p=0.21)
PR	6	14
Resp. Duration	15 mo	24 mo (p=0.18)
Med. Surv.	13 mo	17 mo (p = 0.21)
Durable 3 yr CR	0	7 (p=0.01)

- Selection criteria
 - Non-clear cell have minimal to no benefit
 - Suggestion that post-VEGFR TKI treatment has higher toxicity and lower efficacy

Checkpoint Inhibitors in Renal Cancer

Nivolumab Phase 1/2 Trial

Population	Dose (mg/kg)	Patients (n)	ORR n (%)	Duration of Response (mo)	SD ≥24 wk n (%)	PFSR at 24 wk (%)
ALL RCC	1, 10	33	9 (27)	5.6+ to 22.3+	9 (27)	56
	1	17	4 (24)	5.6+ to17.5+	4 (24)	47
RCC	10	16	5 (31)*	8.4 to 22.3+	5 (31)	67

McDermott, et al. JCO, 2015 33:2013-20

Checkpoint Inhibitors in Renal Cancer

Atezolizumab (MPDL3280a) Phase 1/2

	RECIST 1.1 Response Rate (ORR)	SD of 24 Weeks or Longer	24-Week PFS
Overall population (N = 140)	21%	16%	45%
RCC* (n = 47)	13%	32%	53%
Clear cell (n = 40)	13%	35%	57%
Non-clear cell (n = 6)	17%	0	20%

* 1 patient with unknown histology. Includes sarcomatoid and papillary RCC. All patients first dosed prior to August 1, 2012; data cutoff February 1, 2013. ORR includes unconfirmed PR/CR and confirmed PR/CR.

THE UNIVERSITY OF CHICAGO MEDICINE & BIOLOGICAL SCIENCES

Cho, et al, ASCO 2013

Checkpoint Inhibitors in Renal Cancer

Nivolumab + Ipilimumab

THE UNIVERSITY OF CHICAGO MEDICINE & BIOLOGICAL SCIENCES

Hammers, et al, ASCO 2014

Baseline Gene Expression Profiling to Predict Nivolumab response

Lower expression

- Establishment of protein localization (*P* < 10⁻⁵)
- Negative regulation of epithelial cell proliferation involved in lung morphogenesis (P < 10⁻⁴)
- Genes downregulated by ipilimumab in melanoma¹ (P < 10⁻⁴)

Higher expression

- Genes upregulated by ipilimumab in melanoma¹ (*P* < 10⁻²³)
- Immune system (45 genes; *P* < 10⁻⁷) IL15Ra, IL1R2, IRF1
- Myeloid lineage: eg, IL1A, LINC00158, PRAM1, SPI1
- Lymphoid lineage: eg, CD3E, AIM2, GZMB, NKG7, CD7, CTSW

^aSignificant at 10% false discovery rate threshold
Bold: denotes gene ontology biological process category
1. Ji RR, et al. *Cancer Immunol Immunother* 2012;61:1019–31.

THE UNIVERSITY OF CHICAGO MEDICINE & BIOLOGICAL SCIENCES

Renal Cancer Immunotherapy Conclusions

- HD IL2 only known curative therapy
 - Rare long term benefit
 - Role in context of checkpoint inhibitors?
- Checkpoint inhibitors likely to enter therapeutic armamentarium
 - Phase III upfront trials
 - Nivolumab/Ipilimumab vs. Sunitinib
 - Bevacizumab/Atezolizumab (MPDL3280) vs Sunitinib
 - Phase III refractory trials
 - Nivolumab vs. Everolimus (accrual complete)
 - Announced as "positive" in the business pages
- Molecular predictive markers not yet ready for prime time

Urothelial Cancer: BCG

- Effective in non-muscle invasive localized bladder cancer
 - Ta disease: prevent recurrence
 - Tcis/T1 disease: therapeutic/curative
- Historically developed as subcutaneous + intravesicle
 - Subcutaneous BCG does not enhance
 - Requires BCG strain that binds to urothelium
 - Requires an inflammatory reaction
- Mechanism of action not clear

Urothelial Cancer: PD1 Pathway Inhibitors

Atezolizumab (MPDL3280A): PDL1 staining as predictive marker

PD-L1 IHC n = 87 ⁶	D-L1 IHC ORR = 87 ^b (95% CI), % ^a		CR, n (%)		PR, n (%)	
IC3 (n = 12)	67% (35%-90%)	500/ (25 CE)	4 (33%)	0 (2004)	4 (33%)	14 (200/)
IC2 (n = 34)	44% (27%-62%)	50% (35, 65)	5 (15%)	9(20%)	10 (29%)	14 (30%)
IC1 (n = 26)	19% (7%-39%)	470/ (7.00)	-		5 (19%)	7 (17%)
IC0 (n = 15)	13% (2%-40%)	17% (7, 32)	2	-	2(13%)	

- Responses were observed all PD-L1 subgroups, with higher ORRs associated with higher PD-L1 expression in IC
- Responders also included patients with visceral metastases at baseline: 38% ORR (95% CI, 21%-56%) in 32 IC2/3 patients and 14% (95% CI, 5%-30%) ORR in 36 IC0/1 patients

Urothelial Cancer: PD1 Pathway Inhibitors

Pembrolizumab: PDL1 expression as predictive marker

Tumor Cells Only (N = 29 ovaluable)		Tumor and Tumor Associated Inflammatory Cells (N = 28 ovaluable)		
1	(III - 25 evaluable)		v – 20 evaluable)	
V	ORR (95%CI)	14	ORR (95%CI)	
Negati∨e (N= 11)	9% (0%-41%)	Negati∨e (N=4)	0% (0%-60%)	
Positi∨e (N = 18)	33% (13%-59%)	Positi∨e (N = 24)	29% (13%-51%)	

 In order to maximize detecting responders while minimizing the false negative rate, scoring needs to take into account both PD-L1 positive tumor cells and PD-L1 positive tumor associated inflammatory cells

Urothelial Cancer: PD1 Pathway Inhibitors

Pembrolizumab: Immune cell expression profiling as predictive marker

	Nominal One-sided <i>P</i> -value*				
Signature	ORR N = 25	Clinical Benefit (CR+PR+SD) N = 25	PFS N = 29	OS N = 29	
IFNγ-induced (6-gene)	0.698	0.722	0.406	0.184	
Expanded Immune (18-gene)	0.616	0.342	0.115	0.193	
T-Cell Receptor Signaling (13-gene)	0.405	0.073	0.024	0.322	
De-Novo (33-gene)	0.702	0.322	0.131	0.315	

*Using one-sided test from logistic regression for best overall response or Cox regression for PFS.

Plimack, et al. ASCO 2015

Urothelial Cancer Conclusions

- Checkpoint inhibitors likely to enter therapeutic armamentarium
 - Phase 3 Trials
 - Refractory: Pembrolizumab vs paclitaxel OR vinflunine
 - Adjuvant: Atezolizumab versus observation
 - Many phase 2 single agent and combination trials
- Ripe for exploration of molecular phenotyping
 - Urothelial cancer may be at least 3 molecular phenotypes
 - FGFR and WNT pathway activation as mediators of "non-inflamed phenotype"

